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Organic Synthesis with Fluorous Tags and Reagents 
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Award Lecture



TIME FLIES WHEN YOU ARE HAVING FUN; TWENTY-TWO 
GLADYSZ GROUP FLUOROUS COWORKERS AND STILL 

COUNTING 

John A. Gladysza 

 
a Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, 

Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany 

 

E-mail: gladysz@chemie.uni-erlangen.de and gladysz@mail.chem.tamu.edu 

 

 

In gratitude for the award associated with this presentation, a distinct effort will be 

made to recognize the more than 22 doctoral and postdoctoral coworkers who have 

collaborated with the author over the last dozen years. [1] Although others can claim 

many more "firsts" in fluorous chemistry, it is believed that more "second generation" 

academic practitioners of fluorous chemistry stem from the author's group than any 

other. Subjective comments regarding the "state of the field", primarily with respect to 

catalysis, recovery protocols, and future directions, will be offered. [2] 

 

Two new themes will be treated, both of which involve in some fashion a fluorous/ 

non-fluorous liquid/liquid interface. Most chemists associate the phrase "fluorous 

catalysis" with catalyst recovery. However, it seemed to the author's group that fluor-

ous techniques might also be used for catalyst activation. For example, there are 

many metal-based catalyst precursors from which a ligand must first dissociate 

before the catalytic cycle can be entered. The reverse reaction often slows the overall 

rate. Thus, if the ligand could be efficiently scavenged, faster reactions would occur. 

Most scavenging strategies involve chemical derivatization, but fluorous 

methodologies could bring phase transfer into play, as exemplified in the graphic 

below.  
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This presentation will detail the synthesis of analogs of Grubbs' second generation 

catalyst with fluorous phosphines, and their application in metathesis reactions in 

organic solvents and fluorous/organic liquid/liquid biphase systems. [3] Under the 

latter conditions, significant rate accelerations are observed. These are consistent 

with a lower concentration of phosphine in the reactive phase.  

 

In a related endeavor, the author's group was curious whether reactions involving 

ions might be possible in fluorous solvents. Scenarios are easily envisioned – for 

example, in sequestering toxic compounds or nuclear waste – whereby it would be 

desirable to carry out a range of reactions in a fluorous phase. Towards this end, the 

synthesis and physical properties of fluorous phosphonium salts will be reported. [4] 

These serve as phase transfer catalysts for Finkelstein-type displacement reactions 

in fluorous and other non-polar media. [5]   
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[1] (a) Postdoctoral coworkers: Bernatis, P. R.*; Gea, Y.*; Dembinski, R.; Juliette, 

J. J. J.; de Rege, P.*; Guillevic, M.-A.; Barthel-Rosa, L.-P.; Rutherford, D.; Bennett, 

B.; Klose, A.; Meier, R.; Jiao, H.; Soós, T.; le Stang, S.; Zhuravlev, F.; Tuba, R.; Dinh, 

L. V.; Consorti, C. S. (b) Doctoral coworkers: Alvey, L. J.; Rocaboy, C. R. Dinh, L. V.; 

Wende, M.; Emnet, C.; Tesevic, V.; da Costa, R.; Jurisch, M. (* = joint with I. 

Horváth)  

[2] Gladysz, J. A.; Tesevic, V. Topics in Organometallic Chemistry 2007, in press. 
DOI: 10.1007/3418_043. 

[3] da Costa, R. C.; Gladysz, J. A. Adv. Synth. Catal. 2007, 349, 243-254. 
[4] Emnet, C.; Weber, K. M.; Vidal, J. A.; Consorti, C. S.; Stuart, A. M. Gladysz, J. 

A. Adv. Synth. Catal. 2006, 348, 1625-1634. 

[5] Consorti, C. S.; Jurisch, M.; Gladysz, J. A. Org. Lett. 2007, 9, in press. DOI: 
10.1021/ol0706354 
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Name: Prof. John A. Gladysz 
Present Position: Head of Institute 
Working Address: Institute for Organic Chemistry, 
University of Erlangen-Nuremberg, Henkestraße 42, 
91054 Erlangen, Germany 
Phone & Fax: 0049 9131 85-22540, -26865 
E-mail: Gladysz@chemie.uni-erlangen.de 
Education and Experience 
1971 B.S.Chem., University of Michigan 
1974 Ph.D., Stanford University 
1974-1982 Assistant Professor, UCLA 
1982-1998 Associate Professor/Professor, University of Utah 
1998-2007 Professor Ordinarius (organic chair), University of Erlangen-Nuremberg 
 
Principle Awards and Honors  
1984-present, Associate Editor, Chemical Reviews 
1988, Arthur C. Cope Scholar Award 
1994, American Chemical Society Award in Organometallic Chemistry 
1995-1996, von Humboldt Foundation Research Award for Senior Scientists 
 
Research Interests 
Research in the Gladysz group centers around organometallic chemistry, and from this 
core branches into organic synthesis, catalysis, enantioselective reactions, stereochem-
istry, mechanism, molecular devices, and materials chemistry. 
 
Selected Publications 
1. "'Giant' Gyroscope-Like Molecules Consisting of Dipolar Cl-Rh-CO Rotators 

Encased in Three-Spoke Stators That Define 25-27 Membered Macrocycles", 
Wang, L.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed. 2006, 45, 4372.  

2. "A Synthetic Breakthrough into an Unanticipated Stability Regime: A Series of 
Isolable Complexes in which C6, C8, C10, C12, C16, C20, C24, and C28 Polyyne-
diyl Chains Span Two Platinum Atoms", Zheng, Q.; Bohling, J. C.; Peters, T. B.; 
Frisch, A. C.; Hampel, F.; Gladysz, J. A. Chem. Eur. J. 2006, 12, 6486. 

3. "'Catalyst-on-a-Tape' – Teflon: A New Delivery and Recovery Protocol for Ho-
mogeneous Fluorous Catalysts", Dinh, L. V.; Gladysz, J. A. Angew. Chem., Int. 
Ed. 2005, 44, 4095. 
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Organic Synthesis with Fluorous Tags and Reagents 

Dennis P. Curran 

 
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15208, USA 

 

curran@pitt.edu 

 
 
 

Because it separates primarily by fluorine content, fluorous phase silica gel can be 
used in a solid phase extraction (spe) mode to separate fluorous compounds from 
organic ones [1,2], and in a chromatographic mode to separate fluorous molecules 
from each other [3].  The spe separation is useful in modern parallel synthesis of 
focused chemical libraries, as new examples will illustrate.  The chromatographic 
separation forms the basis of new mixture synthesis techniques in which members of 
a series of substrates are tagged with different fluorous tags, mixed, carried through 
a series of reactions, and then separated based on the tag prior to detagging.  
Recent fluorous mixture syntheses of stereoisomer libraries of dictyostatins [4], 
cytostatins and other natural product classes will be highlighted. 

 

O

O

O OH
P
O

HO
NaO

cytostatin

O O

OH OH

HO

OH

dictyostatin  
 
 
[1] Zhang, W.; Curran, D. P. Tetrahedron 2006, 62, 11837-11865. 
[2] Moura-Letts, G.; Curran, D. P. Org. Lett. 2007, 9, 5-8. 
[3] Curran, D. P. In The Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, 

D. P., Horvath, I. T., Eds.; Wiley-VCH: Weinheim, 2004, p 101-127. 
[4] Fukui, Y.; Brueckner, A. M.; Shin, Y.; Balachandran, R.; Day, B. W.; Curran, D. 

P. Org. Lett. 2006, 8, 301-304. 
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Name: Dennis P. Curran 
Present Position: Distinguished Service Professor  
 and Bayer Professor of Chemistry 
Working Address: University of Pittsburgh 
 Department of Chemistry 
 219 Parkman Ave., Room 1101 CSC 
 Pittsburgh, PA  15260 
Phone & Fax: 412-624-8240; 412-624-9861 
E-mail: curran@pitt.edu 
 
Education and Experience 
1975  B.S. degree, Boston College 
1979  PhD. degree, University of Rochester 
1981  Postdoctoral fellowship with Prof. Barry M. Trost  (Univ. of Wisconsin, 
Madison, WI) 
1981-1986, Assistant Professor, Univ. of Pittsburgh; 1986-1987, Associate Professor, 
Univ. of Pittsburgh; 1988-1996, Full Professor; 1996-Present, Distinguished Service 
Professor and Bayer Professor of Chemistry; 2000-Present, Founder, Chief Scientific 
Advisor, Fluorous Technologies, Inc. 
 
Awards and Honors  
Blaise Pascal International Research Chair, Préfecture de la Région D’Ile-de-France (Paris), 

2007-2008 
2nd International Society of Fluorous Technology (ISOFT) Award, 2007 (Shared with John 

Gladysz) 
Visiting Professor, Tokyo Institute of Technology, 2007 
The Pittsburgh Award, Pittsburgh Section, American Chemical Society, 2006 
Morley Medal, Cleveland Section, American Chemical Society, 2006 
Pittsburgh Magazine, Innovator of the Year Award, 2003 
Fellow, American Association for the Advancement of Sciences, 2001 
ISI Highly Cited Researcher, among top 100 in chemistry (www.ISIHighlyCited.com), 

2000-present 
Boston College Alumni Achievement Award for Excellence in Science, 2000 
American Chemical Society Award for Creativity in Organic Synthesis, 2000 
Chancellor’s Distinguished Research Award (Univ. of Pittsburgh), 1999 
Janssen Prize for Creativity in Organic Synthesis, 1998 
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Research Interests 
Significant contributions to the emerging discipline of fluorous chemistry.  Additional 
information is at http://radical.chem.pitt.edu. 
 
Selected Publications 
Y. Shin, J. - H. Fournier, A. Brückner, C. Madiraju, R. Balachandran, B. S. Raccor, M. C. Edler, E. 

Hamel, R. P. Sikorski, A. Vogt, B. W. Day, and D. P. Curran, Synthesis and Biological 
Evaluation of (–)-Dictyostatin and Stereoisomers, Tetrahedron 2007, in press. 

X. Wang, S. G. Nelson, D. P. Curran, The Azido Acid Approach to β-Peptides: Parallel Synthesis of a 
Tri-β-Peptide Library by Fluorous Tagging, Tetrahedron 2007, in press. 

A. J. B. Lapierre, S. J. Geib, D. P. Curran, Low-Temperature Heck Reactions of Axially Chiral 
o-Iodoacrylanilides Occur with Chirality Transfer: Implications for Catalytic Asymmetric Heck 
Reactions, J. Am. Chem. Soc. 2007, 129, 494-495.  

G. Moura-Letts, D. P. Curran, Selective Synthesis of (2Z,4E)-Dienyl Esters by Ene-Diene Cross 
Metathesis, Org. Lett. 2007, 9, 5-8. 

Q. Chu, W. Zhang, and D. P. Curran, A Recyclable Fluorous Organocatalyst for Diels–Alder 
Reactions, Tetrahedran Lett. 2006, 47, 9287. 

E. Hamel, B. W. Day, J. H. Miller, M. K. Jung, P. T. Northcote, A. K. Ghosh, D. P. Curran, M. 
Cushman, K. C. Nicolaou, I. Paterson, and E. J. Sorensen, Synergistic Effects of Peloruside A 
and Laulimalide with Taxoid Site Drugs, but Not with Each Other, on Tubulin Assembly, Mol. 
Pharmacol. 2006, 70, 1555. 

D. P. Curran and A. I. Keller, Radical Additions of Aryl Iodides to Arenes are Facilitated by 
Oxidative Rearomatization with Dioxygen, J. Am. Chem. Soc. 2006, 128, 13706. 

W. Zhang and D. P. Curran, Synthetic Applications of Fluorous Solid Phase Extraction (F-SPE), 
Tetrahedron 2006, 62, 11837. 

F. Yang, J. J. Newsome, and D. P. Curran, Structure Assignment of Lagunapyrone B by Fluorous 
Mixture Synthesis of Four Candidate Stereoisomers, J. Am. Chem. Soc. 2006, 128, 14200. 

D. P. Curran, R. Bajpai, and E. Sanger, Purification of Fluorous Mitsunobu Reactions by 
Liquid-Liquid Extraction, Adv. Synth. Catal. 2006, 348, 1621. 

R. S. Tangirala, S. Antony, K. Agama, Y. Pommier, B. D. Anderson, R. Bevins, and D. P. Curran, 
Synthesis and Biological Assays of E-Ring Analogs of Camptothecin and Homocamptothecin, 
Bioorg. Med. Chem. 2006, 14, 6202. 

D. P. Curran, Q. Zhang, H. Lu, and V. Gudipati, On the Proof and Disproof of Natural Product 
Stereostrucures: Characterization and Analysis of a Twenty-Eight Member Stereoisomer 
Library of Murisolins and their Mosher Ester Derivatives, J. Am. Chem. Soc. 2006, 128, 9943. 
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      The original Phase-Vanishing (PV) method based on fluorous triphasic system utilizes 

the physical phenomena that fluorous media are immiscible to most of organic solvents and 

act as liquid membrane to transport reagents that are denser than fluorous media to organic 

solvents containing substrates.  We have successfully demonstrated this concept by room 

temperature bromination of alkenes with molecular bromine to give vic-dibromoalkanes 

(Scheme 1). 1 Since then, a number of applications have been developed, which include 

chlorination of alkenes with chlorine gas,2 halogenation of alcohols with SOBr2, SOCl2, PBr3 

and PCl3, 3 demethylation of methoxyarrenes with BBr3.1 Even a system using a solid reagent, 

such as MCPBA, has been developed4a as a new category of “extractive PV” method.4b  In 

this presentation, we would like to discuss some recent progress surrounding PV methods 

with a special emphasis on bromination chemistry. 

FC-72
d =1.67

Br

hexane
Br

FC-72
d =1.67

dark

Br2
d = 3.12

 
Scheme 1.  Original Phase-Vanishing Bromination in the Dark 

 

   PV reactions generally use triphasic system, however, recently, we developed 

“quadraphasic” PV method5 in which an aqueous “scavenger” phase was added as the forth 

phase to remove acidic byproduct.  For example, Scheme 2 illustrates quadra-phasic 

phase-vanishing bromination of α-tetralone which produces HBr as byproduct.    
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Scheme 2.  Quadra-phasic Bromination  

 

    Associated with the execution of the original PV bromination of alkene with bromine 

(Scheme 1), protection of the test tube from sunlight by wrapping it with aluminium foil was 

indispensable, otherwise, 1-bromoalkane was formed as byproduct.1 We hypothesized that 

hydrogen bromide would be formed by the radical reaction of hydrocarbon solvent with 

molecular bromine, which would then undergo anti-Markovnikov addition to an alkene to 

give 1-bromoalkane (Scheme 3).  Indeed, when we conducted the reaction of 1-dodecene 

with bromine under photo-irradiation conditions, we obtained 1-bromododecane in 32% yield 

together with 68% yield of vic-dibromide yield .   
 

hν

Brisooctane

Br2

FC-72
FC-72

 
 
Scheme 3. Photo-irradiative Bromination  
 

     The use of isooctane in place of hexane gave 1-bromododecane in 61% yield together 

with 39% of dibromide.  Since hydrogen bromide is supposed to be generated by the 

reaction of alkanes dissolved in pefluorohexanes with diffusing bromine, we doubled the 

length of the fluorous phase (22 mm to 44 mm by length, 3 mL to 6 mL by volume) to give 

bromine a chance enough to participate in the reaction with isooctane.  This simple 

manipulation to resulted in the formation of 1-bromodecane as the sole product.  This is a 
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good system to obtain dry HBr in situ and we are now trying the applications. 

 

C10H21
Br

C10H21
Br

Br

61% 39%FC-72, 3 mL

95%FC-72, 6 mL

 2 mmol

trace

500 W Xe lamp6 mL
3 mLFC-72

FC-72

φ13 mm

Br2 2.1 mmol
r.t., 2 h

or

isooctane 1.5 mL
1-dodecene

 
    

     In this presentation we will also discuss a new version of quadra-phasic 

phase-vanishing method which utilizes magnesium one-electron reducing reagent (Scheme 4). 

 

       

ether

MeI

Garden HT-135

O

Garden HT-135

OMgI
Mg powder

 
 
Scheme 4. Quadra-phasic Barbier Reaction 
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A fluorous phase differs from aqueous and common organic phases in that it reveals unique properties, 
which are applicable to novel separation, purification, and catalyst-immobilization techniques.  In 
particular, organic synthesis using the fluorous phase has been rapidly developed in recent years because of 
its high compatibility with Green Chemistry concept.  If the fluorous environment is provided by a 
nanometer-scale synthetic host, the unique properties characteristic of the fluorous phase can be observed 
within the host even in a common aqueous or organic solvent.  Such a micro-fluorous environment has 
been limited to vesicles, micelles, and dendrimers with fluorous interiors, which are not structurally or 
physically well defined.  We report here the formation of a well-defined fluorous micro-droplet in the 
interior of a 5 nm-sized, roughly spherical, complex that spontaneously assembles from 12 metal ions and 
24 banana-shaped bridging ligands.  By attaching a perfluoroalkyl group at the curvature of the ligand, we 
obtain an M12L24 spherical complex whose interior is filled with 24 perfluoroalkyl chains (Scheme 1).  
The interior of the complex is regarded as a molecular-scale fluorous “droplet”, with which we show 
unique fluorous properties such as the selective dissolving of fluorocarbons. 
 

 
 

Ligands 1a-1d were prepared in high yields using the Mitsunobu or Williamson reaction of the 
corresponding RFCH2CH2OH or RFCH2CH2I, respectively, with 2,6-dibromophenol followed by the 
Sonogashira cross-coupling reaction with 4-ethynylpyridine.  When a mixture of ligand 1a (11 � mol) and 
Pd(NO3)2 (9.1 � mol) in DMSO-d6 (0.70 mL) was heated at 70 °C for 3 h, the endo-fluorous M12L24 
complex 2a was quantitatively obtained as indicated by NMR (vide infra).  In a similar way, complexes 
2b-2d were also quantitatively prepared. 

The structural characterization of complexes 2a-2d was achieved by cold-spray ionization mass 
spectrometry (CSI-MS) and 1H and 19F nuclear magnetic resonance (NMR) observations (Fig. 1).  For 2a, 
after counter ion exchange with a triflate ion (OTf-), the M12L24 stoichiometry of 2a was shown by CSI-MS 
with a series of prominent peaks of [2a-(OTf-)m+(DMSO)n]m+ (m = 8-14, n = 0, 1), from which the 
molecular weight was determined to be 20276.5 (calculated as 20272.2).  In 1H and 19F NMR spectra, only 
one set of signals was observed for the ligand 1a portions, which is consistent with the cuboctahedron 
symmetry of 2a.  The observed large downfield shift of PyHa and PyHb protons (Dd = 0.59 and 0.23 ppm, 
respectively) is characteristic of pyridine-metal coordination.  In 19F NMR, signals for the C6F13 chain 
were clearly assigned by 19F-19F NOESY and COSY experiments.  In a similar manner, endo-fluorinated 
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M12L24 spheres 2b-2d were fully characterized.  The diffusion coefficient of 2a-2d determined by 
diffusion ordered NMR spectroscopy (DOSY) experiments using both 1H and 19F nuclei was D = 4.0 ± 0.5 
× 10-11 m2s-1, being consistent with the estimated diameter (4.3 nm) of 2a-2d1.  In addition to satisfactory 
NMR and CSI-MS spectra, we also obtained clear AFM images for 2a-2d indicating their diameters to be 
4.9 ± 0.3 nm. 

 

 
 
Fig. 1.  (A) 1H NMR spectrum of 1a.  (B) 1H and (C) 19F NMR spectra (470 MHz, DMSO-d6) of (top) complex 2a 
and (bottom) inclusion complex of 2a and 3 (indicated in circles).    
 

We expect that the fluorous core of 2a can accommodate (or dissolve) fluorine compounds through 
fluorophilic host-guest interaction.  Thus, excess perfluorooctane 3, which is hardly soluble in DMSO, 
was suspended in a DMSO-d6 solution of 2a (0.43 mM) and the mixture was stirred vigorously at room 
temperature for 2 h.  After excess 3 was removed, the DMSO-d6 solution was analyzed by 19F NMR (Fig. 
2).  In addition to the signals of C6F13 chains of 2a, we observed a set of four signals for the included 3.  
From the integral ratio, it was estimated that ca. 5.8 molecules of 3 were accommodated by 2a.  This 
host-guest ratio remained almost unchanged even if the experiment was carried out at different 
concentrations ([2a] = 0.18, 0.37, or 0.54 mM).  Detailed analysis of 19F NMR spectra showed that the 
signals of the terminal fluorine atoms in the C6F13 chain of 2a were more significantly shifted upfield than 
internal ones:  i.e., Dd = 0.4-1.3 ppm for Fd-f while 0.0-0.1 ppm for Fa-c (Fig. 2).  Based on this finding, 
we assume that guest molecules exist at the core of the hollow complex.  The guest signals are also shifted 
upfield as compared with the signals of free 3 in CDCl3 (Dd = 1.3-2.3 ppm).   
DOSY experiments afforded further evidence for the inclusion of 3 in 2a.  In 19F DOSY NMR, a single 
band consisting of both the signals of 2a and 3 was observed at D = 3.2 × 10-11 m2s-1 (Fig. 2B).  Since the 
diffusion coefficient of free 3 is much larger (D = 1.3 × 10-9 m2s-1 in CDCl3), the coincidence of the 
diffusion coefficients clearly indicates the association of 2a with 3. 

The complex 2a possesses a “raw egg” structure with a rigid spherical M12L24 shell framework and 
flexible perfluoroalkyl chains that probably behave like a liquid within the shell.  Surprisingly, the raw 
egg structure of 2a was clearly revealed by a crystallographic analysis using synchrotron X-ray radiation 
(Fig. 3).  Single crystals of the 2a•(3)n complex were obtained by slow vapor diffusion of 1,4-dioxane into 
a DMSO solution of 2a•(3)n (n = 5.8).  Whereas a conventional laboratory diffractometer afforded data 
with resolution that was too low to determine the structure, the synchrotron X-ray radiation provided 
impressively higher quality data from which the M12L24 shell framework of 2a was refined2.  The fluorous 
chains and the included guest 3 are completely disordered and cannot be located in the crystallographic 
analysis.  The shell framework is in fact shown to be not spherical but oval with a dimension of 4.9 × 4.2 
nm (Fig. 2A).  The distortion from the ideal spherical shape is probably induced by the aggregation of the 
fluorous chains in the shell. 

To elucidate how the host 2a accommodates the guest 3, force-field calculations were carried out:  24 
C6F13(CH2) 2- side chains were attached to the residual oxygen atoms of the ligand 1a portions in the crystal 
structure of 2a and only the side chains were optimized.  The optimized structure shows that, despite the 
aggregation of the fluorous chains, there still remains a void at the core (Fig. 2B).  Therefore, we put six 
perfluorooctane molecules at the void and minimized the whole structure by molecular dynamics 
simulation.  Repeating the gradual annealing from 2000 K to 300 K accumulated energy-minimized 
structures.  All of the minimized structures were converged into an almost identical structure in which the 
guest molecules interact with the terminal CF3CF2CF2- portions of the perfluoroalkyl side chains (Figs. 2C, 

C 
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D).  This is consistent with the NMR observation that shows outstanding upfield shift of the signals of the 
terminal CF3CF2CF2- portions.  We emphasize that the guest molecules 3 are dissolved, rather than 
recognized, in a well-defined fluorous micro-droplet consisting of 24 C6F13 side chains. 

 

 
Fig. 2.  Molecular structure of 2a.  (A) The X-ray crystal structure of the shell framework of 2a.  C6F13CH2- side 
chains at the curvature of the ligands are disordered and could not be located.  (B) The C6F13(CH2)2- side chains 
(orange) are modeled and only the chains are optimized by force-field calculations.  (C and D) Six molecules of 
perfluorooctane (3, red) are placed at the central void of 2a and the structural annealing was conducted from 
2000 K to 300 K by molecular dynamics simulation.  The figure shows one of the energy minimum structures 
obtained after MD simulation followed by force-field optimization.  In Fig. 2D, host 2a is represented by wire 
frames while the accommodated guest molecules are represented by space-filling models. 
 

Due to the well-defined precise structures of the M12L24 framework, the fluorous atmosphere and the 
void space at the core of the complexes are predictable and easily controlled by modifying the fluorinated 
side chain of the ligand.  Sphere 2b with RF = (CF2)7CF3 groups or sphere 2c with more bulky RF = 
(CF2)6CF(CF3)2 groups accommodated a lesser amount of 3 (ca. 2.5 molecules per the sphere complexes) 
presumably due to reduced effective void volume at the core of the sphere.  In contrast, sphere 2d with 
sterically less-demanding (CF2)3CF3 side chains showed no inclusion properties for 3, despite larger void 
space in the sphere, because of insufficient fluorine density to provide an efficient fluorous atmosphere.  
Sphere 2a included other fluorocarbons such as perfluorohexane (ca. 8.0 molecules per 2a), but not 
fluoroaromatics such as perfluorobenzene or –naphthalene because of their low fluorine concentration. 
In summary, we have demonstrated the construction of nano-scale fluorous droplet in an organic solvent 
exploiting the efficient self-assembly of ligands and transition metals.3  The cavity is large and can 
effectively uptake up to several fluorocarbon molecules, whereby this ability is precisely controlled by the 
design of perfluoroalkyl groups.  The high degree of variety and precision in designing and synthesizing 
organic ligand molecules promises important further applications, because fluorous environments play key 
roles in many areas. 
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Commercial automated solid-phase synthesis of nucleic acids and peptides has 

driven a significant part of genomics and proteomics. Unfortunately, solid-phase 

approaches are practically limited to building blocks that are made in a few steps 

because they require large excesses of building blocks to achieve the high yields 

required when intermediates cannot be purified. Recently, we have developed an 

alternative solution-phase automation strategy to iterative synthesis that is based on 

"light" fluorous tags and purification that relies on noncovalent interactions. The 

challenges in implementing such an automated approach will be presented in the 

context of the synthesis of a range of oligosaccharides for glycomics and immunology 

studies (Scheme 1). Noncovalent fluorous-fluorous interactions do appear to be 

robust enough to support robotically programmed compound separation of growing 

saccharide chains based on a fluorous tag. 
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Scheme 1. 
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Scheme 2. 
 
This automated fluorous synthesis strategy has the added benefit of providing 

compounds with a fluorous tail that allow their direct surface patterning to form 

carbohydrate microarrays for biological screening with carbohydrate-binding proteins 

such as plant lectins (Scheme 2). [1-3] The noncovalent fluorous-fluorous interactions 

of the tagged compounds with the fluorocarbon-derivatized slides has proven strong 

enough to withstand even detergents used in standard bioassay buffers. Most 

recently, the synthesis of a new fluorous tag facilitates the incorporation of reducing 

sugars into microarrays. 

 

[1] Pohl, N. L. Carbohydrate Microarrays and Fluorous-Phase Synthesis: 

Interfacing Fluorous-Phase Tags with the Direct Formation of Glycoarrays. In Current 

Fluoroorganic Chemistry: New Synthetic Directions, Technologies, Materials, and 

Biological Applications; Soloshonok, V. A.; Mikami, K.; Yamazaki, T.; Welch, J. T.; 

Honek, J. F., Eds. ACS Symposium Series 949; American Chemical Society: 

Washington, DC, 2007, p. 261.  
 

[2]  Mamidyala, S. K.; Ko, K.-S.; Jaipuri, F. A.; Park, G.; Pohl, N. L. J. Fluorine 

Chem. 2006, 127, 571. 
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By taking advantage of labile coordination bonds, we have developed a reversible 

liquid-liquid Hydrocarbon-Perfluorocarbon phase-switching protocol that relies on the 

reversible coordination of pyridyl tags to “heavy fluorous” dicopper(II)-carboxylate 

complexes that are soluble in PFCs only. Of particular interest is the extreme 

efficiency and sensitivity of this reversible “catch-and-release” process. For example, 

quantitative release of the caught compounds from the fluorous to the organic phase 

is typically achieved by adding THF to the biphasic system. The reversible 

phase-switching of pyridyl-tagged porphyrins and metalloporphyrins will be described 

as well as applications of this methodology to the purification of reaction products 

and to the development of multiphasic “indicator-displacement assays” employed for 

the detection/titration of analytes such as histamine or ethanol. 

We will also present a novel Hydrocarbon-Perfluorocarbon phase-switching 

methodology based on hydrogen-bonding between fluorous-carboxylates/ 

fluorous-carboxylic acids allowing for the efficient extraction of cationic species such 

as [Ru(bpy)3]2+ (bpy = 2,2’-bipyridine) into the fluorous phase. 

 

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

37



VINCENT Jean-Marc 
CNRS researcher 
Institut des Sciences Moléculaires, Bordeaux University, France 
Phone: 33 (0)5 40 00 89 42 
E-mail: jm.vincent@ism.u-bordeaux1.fr 
 
Education and Experience 
1992  M.Sc. degree, Université Joseph Fourier, Grenoble, France 
1992-95 PhD on biomimetic models of metalloenzymes, Université Joseph Fourier, 
Grenoble, France 
1996-1997 Postdoctoral fellowship with Prof. R.H. Fish (Lawrence Berkeley National 
Laboratory, US) 
1997- CNRS researcher at the Institut des Sciences Moléculaires, Université de 
Bordeaux 
 
Research Interests 
Fluorous chemistry, asymmetric organocatalysis, copper(I) catalyzed reactions, 
methodologies for catalysts recycling 
 
Selected Publications 
“The pyridyl-tag strategy applied to the hydrocarbon/perfluorocarbon phase-switching of a 

porphyrin and a fullerene”, M. El Bakkari, N. McClenaghan J.-M. Vincent J. Am. Chem. Soc., 

2002, 124, 12942. 

“Closer to the « ideal recoverable catalyst” for atom transfer radical polymerisation using a 

molecular non-fluorous thermomorphic system”, G. Barré, D. Taton, D. Lastécouères,* J.-M. 

Vincent J. Am. Chem. Soc, 2004, 126, 7764. 

“Fluorous phase-switching of pyridyl-tagged substrates/products” M. El Bakkari, J.-M. Vincent 

Org. Lett., 2004, 6, 16, 2765. 

“Reversible fluorous phase-switching of pyridyl-tagged porphyrins: Application to the sensing of 

histamine in water” M. El Bakkari, B. Fronton, R. Luguya, J.-M. Vincent J. Fluor. Chem., 2006, 

127, 4-5, 447. 

“Benzoimidazole-pyrrolidine/H+ (BIP/H+), a highly reactive organocatalyst for asymmetric 

processes”, E. Lacoste, E. Vaicque, M. Berlande, I. Pianet, J.-M. Vincent, Y. Landais Eur. J. Org. 

Chem. 2007, 167. 

 

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

38



FLUORINE CHEMISTRY FOR FLUOROUS CHEMISTRY 
József Rábai 

 
Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1-A, Budapest, 

H-1117 Hungary 
 

rabai@elte.hu 
 
 
 

Fluorous chemistry [1] has become a new discipline, the history and paradigms of 
which are summarized in a recent Handbook [2]. Main streams include fluorous 
biphasic catalysis, fluorous synthesis and fluorous mixture synthesis, which are 
recently being supplemented with thermomorphic and confined fluorous systems. 
All branches of fluorous chemistry are based on the unique properties of 
perfluoroalkanes and related solvents, such as chemical inertness, immiscibility with 
water and most hydrocarbons, low refractive index and as a consequence low 
intermolecular forces. Noteworthy is the fact that the substitution of hydrogen by 
fluorine is the sole methodology to reduce the electronic polarizability and to make 
the molecule hard and to lower the boiling point [3]. 
Fluorophilic compounds represent a subclass of fluorous ones, displaying a fluorous 
partition coefficient, PFBS>1, measured between a c-CF3C6F11-toluene solvent pair at 
25oC temperature; while all fluorous compounds have at least one perfluoroalkyl- 
chain or 'fluorous ponytail' (e.g. Rfn = CnF2n+1, n = 1-10) in each molecule. Fluorophilic 
compounds can be designed effectively using the simple 'like dissolves like' rule or 
more complex mathematical expressions derived from thermodynamic models [1, 4]. 
Both the present practice and the future development of fluorous chemistry should be 
affected by the awareness of the environmental and health issues of the involved 
perfluoroalkyl-species, since the presence of perfluorooctanesulfonate (PFOS) and 
perfluorooctanecarboxylate (PFOA) in the environment have been detected globally, 
including blood plasma of nonoccupationally exposed humans too (Scheme 1) [5]. 
 

Problem 1o "Bioaccumulation of perfluorinated C8 derivatives"  
Problem 2o "Fluorocarbon's persistence and global warming pot ential (GWP)" 

Scheme 1.  Strategic Issues for Fluorous Chemistry Development 
 

The first problem calls for the introduction of either shorter fluorous ponytails and/or 
the development novel generation ponytails based on fluorine chemistry examples. 
CF3-group chemistry has been identified by us and others as a promising strategy for 
this purpose. The second issue could be solved by the substitution of other solvents 
for fluorocarbons or using no solvents, whenever possible. The purposeful selection 
and application of non-volatile fluorous ionic liquids, stationary fluorous liquid phases, 
confined fluorous nanodroplets, self assembled fluorous monolayers and solid 
superstoichiometric poly(carbon fluorides) {[CF1.12±0.03]n} could be useful choices. 
Saturated fluorocarbons (RFH) and fluorocarbon halides (RFX, X =I, Br, Cl), acid 
fluorides (RFCOF) and sulfonyl fluorides (RFSO2F) are amongst the most frequently 
used fluorous solvents and precursors.  
Telomer iodides  n-CnF2n+1I with even carbon numbers are more easily accessible 
than those with odd carbon numbers, due to their production schemes (a & b); since 
the syntheses of telogenes like CF3I and (CF3)2CFI are more complex and expensive. 
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(a) C2F4 + IF5-2I2 + MoF6 (cat) at 75oC → C2F5I (JP 73 52 706) 
(b) C2F5I + C2F4 + (i-PrO2CO)2 at 55 oC → CF3(CF2)xI, x= 3, 5, 7, etc. (JP 73 42 852) 

 
Although many fluorous reagents have recently become commercially available and 
thus facilitate the practice of fluorous chemistry, there is a need for their cost effective 
syntheses. We chose perfluoroalkyl iodides and divinyltetramethyldisiloxane, allyl 
alcohol and N-allylphthalimide, respectively, for the syntheses of RfnC2 and RfnC3 
derivatives. The radical chain addition of perfluoroalkyl iodides to alkenes followed by 
functional group transformations afforded the reagents shown below (Scheme 2). 
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(i) CH2=CHCH2OH, AIBN, K2S2O5-H2O, (ii) N2H4*H2O, Raney-Ni, (iii) Pred, heating, (iv) Jones oxidn.,  
(v) AgNO3 ,

 tBuOH-H2O, (vi) Et2NH, Et2O, r.t., (vii) CF3C(O)O-NHCOCF3, pyridine, heating; 
(viii) (CH2=CHSiMe2)2O/AIBN, (ix) Bu4NF/THF, (x) Et2NH, reflux, (xi) H2/Pd, (xii) NaBH4/diglyme,  

(xiii) PCl3, (xiv) N-allylphthalimide, AIBN, iso-octane, (xv) N2H4/CH3OH, reflux; HCl. 
 

Scheme 2. An entry to fluorous propanols, propanals, propenols, propenes, ethenes, 
propionitriles, propylamines, allylamines, propanoic acids, silanes and siloxanes. 

 
Similar yields can be obtained with the use of shorter perfluoroalkyl iodides as well, 
including straight chain n-C4F9I, n-C6F13I and the branched chain (CF3)2C(CF2)4I, 
without significant alteration of the above reaction conditions. Work-up procedures 
are based on the inherent fluorous nature of products, since fluorous chemistry was 
invented to provide facile separation of the products from reagents or catalysts [5a]. 
 
Telomer alcohols  H(CF2CF2)nCH2OH have two reaction sites and can be used for 
the synthesis of functionalized perfluoroalkyl iodides {e.g. CH3CO2CH2(CF2)8I}. Such 
fluorous derivatives could be useful intermediates for materials science applications. 
Perfluoroalkanecarboxylic acids RfnCO2H, and perfluoroalkanesulfonyl halides 
RfnSO2X (X = F, Cl) with smaller carbon numbers also have large potential for the 
synthesis of novel fluorous tags and non-nucleophilic fluorous anions for ionic liquids. 
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Nonafluoro -tert-butyl alcohol  (CF3)3COH has been demonstrated by us and others 
to be a valuable CF3-rich fluorous precursor. Some derivatives include a multiplicity 
of this building block per molecule, but due to symmetry reasons they display only 
one high intensity singlet in their 19F NMR spectra. This property can be exploited for 
the design and synthesis of novel magnetic resonance imaging (MRI) diagnostics. 
Our preliminary results with this novel fluorous alcohol are shown below (Scheme 3). 
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Scheme 3. Sequential synthesis of 1o (5), 2o (6) and 3o (7) fluorous-ethyl amines. 

 
Fluorous monolayer protected gold clusters can be synthesized using the Brust- 
Schiffrin method, which is based on the reduction of gold(I) in the presence of an 
excess of thiol. We observed, that the place displacement reaction of the surface 
layer of fluorous F-(Au x) or organophilic ORG-(Au x) gold clusters with an excess of 
n-C12H23SH or C8F17(CH2)3SH, respectively, results in the transfer of the gold nano- 
clusters from one layer to the other layer of a fluorous biphasic system according to 
the phase affinity of the protecting thiols (Eq.1, Eq.2) [Ref. 2, Chapter 14].  

(Au )x[HS(CH2)3C8F17]y   +   xss HSC12H25  (Au )x[HSC12H25]y   +  y HS(CH2)3C8F17 Eq.1.

(Au )x[HSC12H25]y   +  xss HS(CH2)3C8F17
(Au )x[HS(CH2)3C8F17]y   + y  HSC12H25  Eq.2.

 
We synthesized a series of MPC's and studied their thermal stability with TG method. 
Decomposition temperatures are: Aux(HSC12H25)y 270oC, Aux(HSCH2CH2CH2C8F17)y 

239oC, Aux(HSCH2CH2C6F13)y 215oC and Aux(HSCH2C7F15)y 191oC. The lower the 
latter temperature the easier is the deposition of gold particles onto porous supports. 
 
Acknowledgements. We thank the H.S.R.F. for founds (OTKA K062191, T043738). 
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Perfluorocarbon fluids, especially perfluoro-alkanes, esters and amines have some unique 

properties that make them attractive alternatives for conventional organic solvents. For 

example, they have limited miscibility with conventional organic solvents. Compounds 

functionalized with perfluorinated groups often dissolve preferentially in fluorous solvents. 

This character can be used to extract fluorous components from reaction mixtures. Therefore, 

“Fluorous Biphase System” (FBS) technique allows the catalysis to be performed in a 

two-phase reaction mixture consisting of a perfluorinated solvent and an organic solvent. 

This is because that the recovery of the perfluoro-tagged catalyst can be achieved by simple 

phase separation along with the product isolation.  

In this presentation, we will report that by using perfluorodecalin (C10F18, cis- and 

trans-mixture) as a fluorous solvent and perfluorinated rare earth metal salt 

[Yb(OSO2C8F17)3] as a catalyst, the electrophilic aromatic nitration can be repeated for many 

times only by nitric acid. The catalyst loading is only 0.05~0.1 mol% and the use of 

halogenated solvents can be avoided in this rare earth metal salts catalyzed electrophilic 

aromatic nitration.1  
 

HNO3, Ln(OSO2C8F17)3 (0.1  mol%)

Fluorous phase
R R

NO2

 

 

In addition, we successively applied the “Fluorous Biphase System” (FBS) technique to the 

reactions of cyclopropyl aryl ketones with α-ketoacetic acids catalyzed by C8F17SO3H (30 

mol%) using perfluorodecalin (C10F18, cis- and trans-mixture) and DCE as a co-solvent to 

give 5,6-dihydropyran-2-ones in good yields. The reaction can be performed several times 

without reloading the catalyst and the fluorous solvent.2  
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In the aza-Morita-Baylis-Hillman reaction of N-sulfonated imines 

(N-arylmethylidene-4-methylbenzenesulfonamides and others) with methyl vinyl ketone 

(MVK), we found that in the presence of catalytic amount of chiral phosphine Lewis bases 

(R)-(-)-6,6’-bis[tris(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silyl]-2’-(diphenylphosphanyl

)-[1,1’]binaphthalenyl-2-ol LB2 and (R)-(-)-6,6’-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl) 

-2’-(diphenylphosphanyl)-[1,1’]binaphthalenyl-2-ol LB3 bearing two perfluoroalkane chains 

at 6,6’-position of naphthalene framework (Figure 1), the corresponding 

aza-Morita-Baylis-Hillman adducts could be obtained in good yields with good to high ee 

(52-95% ee) at room temperature (15 oC) or low temperature (-20 oC) in THF, respectively 

(Tables 1 and 2). LB3 is more effective in this reaction than the previously reported original 

chiral phosphine Lewis base (R)-(-)-2'-diphenylphosphanyl-[1,1']binaphthalenyl-2-ol LB1. 

This finding provided an easy access to recover the phosphine organocatalyst using FBS 

technique.  

 

PPh2

OH

C6F13

C6F13

LB3

PPh2

OH

C6F13

C6F13 LB2

Figure 1. The structures of chiral phosphine Lewis bases bearing perfluoroalkane long chains "pony tails".
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Ar CH
O

N-R

OTsHN

Ar+
LB2 (10 mol%)

THF

entry temp. (oC) time/h
yield/%a)

ee/%b)

15 24 2b, 58 762

15 24 2c, 73 713

15 24 2d, 88 704

5 24 2e, 53 78

absolute
configuration

S

S

S

S

a)Isolated yield. b)Determined by chiral HPLC.

Table 1. aza-Baylis-Hillman reactions of N-sulfonated imines 1 (1.0 equiv.) with methyl 
vinyl ketone (3.0 equiv.) in the presence of chiral phosphine Lewis base LB2 (10 mol%).

2

Ar

p-FC6H4

p-ClC6H4

p-BrC6H4

p-NO2C6H4

6

7

8

o-ClC6H4

trans-C6H4CH=CH

p-ClC6H5

48

48

48

2f, 82

2g, 77

76

52

S

S

S

15

15

15

15 2h, 78 80

2
No.

1b

1c

1d

1e

1f

1g

1h

1

R

Ts

Ts

Ts

Ts

Ts

Ts

Ms

1 15 24 2a, 60 82 S1aTsC6H5

 
 

Ar CH
O

N-R

OTsHN

Ar+
LB3 (10 mol%)

THF

entry temp. (oC) time/h
yield/%a)

ee/%b)

1 25 12 2c, 84 89

2 0 12 2c, 93 91

3 -20 24 2c, 70 94

4 -20 24 2d, 83 93

5 12 2e, 83 86

absolute
configuration

S

S

S

S

S

a)Isolated yield. b)Determined by chiral HPLC.

Table 2. aza-Baylis-Hillman reactions of N-sulfonated imines 1 (1.0 equiv.) with methyl 
vinyl ketone (3.0 equiv.) in the presence of chiral phosphine Lewis base LB3 (10 mol%).

2

Ar

p-ClC6H4

p-ClC6H4

p-ClC6H4

p-BrC6H4

p-NO2C6H4

6

7

8

m-FC6H4

m-NO2C6H4

C6H5

24

24

48

2i, 69

2j, 84

92

95

S

S

S

-20

-20

-20

-20 2a, 91 71

2
No.

1c

1c

1c

1d

1e

1i

1j

1a

1

9 o-ClC6H4 1f -20 48 2f, 90 89 S

10

R

Ts

Ts

Ts

Ts

Ts

Ts

Ts

Ts

Ts

trans-C6H5CH=CH Ts 1g -20 48 2g, 98 78 S

11 p-ClC6H4 Ms 1h -20 48 2h, 75 86 S
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The authors have reported an expeditious synthesis of bistratamide H using a 
new fluorous protecting group FTeoc in the last ISoFT05.   Almost all the fluorous 
intermediates were easily isolated by fluorous liqiud phase extraction and thus the 
targeting bistratamide was synthesized expeditiouly [1].   Although the heavy 
fluorous protecting group enabled us to establish the synthetic route of the 
macrolactam, it was expected that such a heavy protecting group would cause a 
problem in the case of a fluorous mixture synthesis.   Too much differences in 
fluorine atom contents between the fluorous protecting groups could lead to large 
differences in partition coefficient toward fluorous and organic solvents and thus we 
will have to use fluorous solid phase extraction sooner or later to capture the 
components that have low fluorine atom contents.   Therefore we thought that light 
fluorous protecting group such as fluorous Boc (FBoc) and a fluorous solid phase 
extraction (F-SPE) method were more suitable for the mixture synthesis of the 
macrolactams (Fig. 1).   We would like to report this time an examination to prepare 
bistratamides H, C, tenuecyclamide A and B [2], and their diastereomers and 
analogues by employing Curran's strategy of double mixture synthesis using light 
fluorous and oligoethylene glycol tags [3]. 
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Figure 1. Bistratamide, Didmolamide, and Tenuecyclamide Macrolactams.  
 
The synthesis of bistratamide H using light fluorous protecting groups was carried 

out by the same way as that of the heavy FTeoc group except that the FBoc-protected 
intermediates were isolated by fluorous solid phase extraction with a FluoroFlash 
column.   In the case of bistratamide C, however, it was revealed that racemization 
during FBoc-protected alanine-thiazole and -oxazole amino acid syntheses was 
serious problem in a modified Hantzsch method and a PEG-Burgess (Wipf) method 
that were successfully used for valine analogues.   The problem was solved by 
using Shioiri and Robinson-Gabriel methods instead, respectively (Fig. 2).  

Since the general synthetic route has been established, we first tried to carry out 
a quasiracemic mixture synthesis [4] of the macrolactams.   F17Boc and F21Boc were 
used for the protecting groups of (S)- and (R)-alanine or (S)- and (R)-valine and the 
quasiracemic mixtures of them underwent the reactions to lead the corresponding 
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mixtures of thiazole amino acid esters.   Then the mixtures were coupled with   
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Figure 2. Fluorous Synthesis of Thiazole and Oxazole Amino Acid Esters.  
 
thiazole and oxazole amino acids to give the corresponding quasiracemic mixtures of 
hexapeptide precursors of the macrolactams.   Each component of the mixtures was 
cleanly separated by fluorous silica gel column chromatography with a FluoroFlash 
column.   The precursors were saponified, deprotected and cyclized to give the 
corresponding macrolactams in good yields.   

Next we examined a mixture synthsis of bistratamide H, its diastereomer and  
two analogues by using oligoethyleneglycol tags [5].   At first, (S)- and (R)-valine  
oxazole amino acids and (S)- and (R)-alanine oxazole amino acids were prepared by 
usual non-fluorous method and then the carboxyl group of each amino acid was 
esterified with oligoethylene glycol methyl ethers HO(CH2CH2O)nCH3 (n=1, 2, 3, 4), 
respectively.   Equimolar amount of the esters were mixed and the mixture was 
N-deprotected and then reacted with (S)-Boc-valine thiazole amino acid twice to give 
the corresponding precursor mixture.   The four components of the mixture were 
easily separated by silica gel column chromatorraphy and then saponified, 
deprotected and cyclized to give bistratamide H, its diastereomer and a pair of 
analogues that include enantiomeric alanine oxazole aminoacids. 

Based upon these results, we finally chllenged a double mixture synthesis of 
bistratamide H, its diastreomer and six analogues (Fig. 3).   The procedures were 
basically the same as those described in the mixture synthesis using oligoethylene 
glycol tags until the mixture (M-6a-d) was reacted with (S)-F17Boc-valine thiazole 
aimino acid (7).   But in this case, the product was reacted with a mixture of 
(S)-F17Boc- and (R)-F21Boc-valine thiazole amino acids (8) in the next step.   The 
eight components of the product were first separated into four pairs of quasiracemic 
mixtures (M-9a ～ M-9d) by silica gel column chromatography and then each 
component of the fluorous quasiracemic mixtures (9a ～ d-F17, 9a ～ dF21) was 
separated by fluorous silica gel column chromatography.   Then each of the 
precursors was saponified, deprotected and cyclized to afford bistratamide H, its 
diastereomer (10) and other six analogues in good to moderate yields.    
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Figue 3. Fluorous Mixture Synthesis of Bistratamide H and Analogues.  
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The detailed structural study of perfluorocarbon derivatives (PFCs) is hampered by 
the poor tendency of these compounds to form crystals suitable for single crystal 
X-ray analysis. Halogen bonding (XB) is the attractive interaction involving halogen 
atoms as electrophilic species.[1] IodoPFCs and their bromo analogues form 
particularly strong halogen bonds as fluorine boosts the electron density acceptor 
ability of iodine and bromine atoms. Highly crystalline materials are obtained when I- 
and Br-PFCs are challenged with neutral or ionic electron donors. The molecular and 
supramolecular aspects of the obtained hybrid materials have been systematically 
assessed by single crystal X-ray analysis.[2] 
In this communication it will be described that when α,ω−diiodoperfluoroalkanes are 
challenged with chelated potassium iodide, infinite chains or honeycomb-like layers 
are obtained depending on the hydrocarbon moiety used to dissociate the ion pair 
and to boost the electron donor ability of the iodide anion. These "primary structures" 
of the halogen-bonded networks further organize into "secondary structures". Infinite 
chains bend into zigzag pathways or roll up into helices, which, in their turn, pair into 
homochiral double helices (Figure 1).[3] Honeycomb-like sheets entangle into 
Borromean links (Figure 2).[4] Other supramolecular architectures with complex 
topologies and containing fluorous tectons will be described.[5] 
 

 
 

Figure 1. Homochiral supramolecular complex containing fluorous double helices in 
the crystal. 
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Figure 2. Spacefill representation of the Borromean links of the honeycomb-like 
sheets defined by the ···I¯···I–(CF2CF2)n–I··· connectivity in the crystal structures 
formed on starting from 1,6-diiodoperfluorohexane (1a) and from 
1,8-diiiodoperfluorooctane (1b). 
 
[1] Metrangolo P., Pilati T., Resnati G CrystEngComm 2006, 8, 946 (Front Cover). 
[2] Metrangolo P., Neukirch H., Pilati T., Resnati G. Acc. Chem. Res. 2005, 38, 
386. 
[3] Casnati A., Liantonio R., Metrangolo P., Resnati G., Ungaro R., Ugozzoli F.  
Angew. Chem. Int. Ed. 2006, 45, 1915. 
[4] Liantonio R., Metrangolo P., Meyer F., Pilati, T., Navarrini, W., Resnati G. Chem. 
Commun. 2006,1819 (Front Cover). 
[5] Metrangolo, P.; Meyer, F.; Pilati, T.; Proserpio, D. M.; Resnati G. Chem. Eur. J. 
2007, DOI: 10.1002/chem.200601653. 
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The dynamic and complex nature of the proteome necessitates the ability 
to enrich and measure constituents of this vast milieu of proteins or their cognate 
peptides.  Co- and post-translational protein modifications at sub-stoichiometric 
levels only adds to the analytical challenge at hand.   'Fluorous' (perfluorinated 
functional group) handles are now widely used for purification of reaction 
products and/or removal of intermediates and catalysts in combinatorial 
chemistry (1).  We have adapted this approach for selective labeling of several 
peptide functionalities (eg O-GlcNAc, pS/pT, primary amine, cysteine thiol) and 
demonstrate the ability to enrich 'fluorous tagged' peptides from complex 
mixtures using fluorous solid phase extraction (FSPE).           
 
 
 
1) Curran et. al. 2000  In Combinatorial Chemistry: A Practical Approach Oxford Univ Press: 
Oxford, Vol. 2; 327-352 
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The segregation of highly fluorinated molecules into a single fluorous phase 
that does not mix with both hydrophilic and hydrophobic phases is known as the 
fluorophobic effect. Our studies are motivated by one question in particular.  Can the 
fluorophobic effect be used to drive the formation of highly regular and 
non-covalently-bound structures in both hydrophilic and hydrophobic solvents?  
Furthermore, can nano- to mesoscopic size fluorous-phase-based assemblies be 
made that have specific properties?  For instance, can such assemblies be 
designed a priori to have liquid crystalline attributes or perhaps the ability to bind 
and/or encapsulate other molecules?  We have shown that indeed, fluorous-phase 
formation can be a powerful driving force for making assemblies of unprecedented 
stability. We have investigated the properties of two different classes of fluorinated 
materials: 1. Semifluorinated copolymers. 2. Amphothropic, semifluorinated 
calix[4]arene derivatives. 
 
1. SEMIFLUORINATED BLOCK COPOLYMERS 

Amphiphilic polymers that assemble in micelles in aqueous solutions have 
found several applications in drug delivery. Depending on the nature of the 
hydrophobic and hydrophilic moieties, micelles can be used to solubilize and deliver 
highly hydrophobic drugs. In general, these nanoparticles can be used for 
pharmaceutical purposes if they are stable in presence of blood proteins. 
Unfortunately, this is a property rarely found in classical amphiphiles. Furthermore, 
micelles must be resistent to dilution (low CMC) or they will leak their precious cargo 
upon dilution in the blood stream. While the design of micelle-forming amphiphiles 
has become very sophisticated, these ideal properties have yet to be found in 
materials based on classical hydrophobic/hydrophilic molecules. We have explored 
the ability of semifluorinated polymers to bind and deliver a variety of hydrophobic 
drugs. Specifically, we have focused on the delivery of fluorinated anesthetics and 
classical hydrophobic drugs. 
 
a. Semifluorinated diblock copolymers for the delivery of fluorinated 
anesthetics.  

The intravenous delivery of fluorinated volatile anesthetics such as the 
commonly used sevoflurane and isoflurane (Figure 1) has 
been studied since this class of molecules has been 
discovered more than fourty years ago. Direct injection into 
the blood stream would improve on traditional inhalation 
methods of delivery due to a more rapid anesthesia onset as 
well as recovery. However, direct injection of these molecules 
in blood results in very significant polmunary damage mainly 
due to embolic thrombosis. Furthermore, the fluorophilic 

Figure 1. Common volatile 
fluorinated  anestehtics
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nature of these molecules prevents the use of lipid emulsions as a means for IV 
delivery. We have investigated the ability of semifluorinated amphiphilic polymers to 
dissolve fluorinated anesthetics in water. Scheme 1 shows some of the polymers we 
have prepared to date.1,2 These polymers are composed by a water-solubilizing and 
biocompatible poly(ethylene glycol) (PEG) coupled to a fluorocarbon moiety.  The 
synthesis of these polymers is based on a two high-yield steps.  

Polymers belonging to the structure type 
outlined in Figure 2 can assemble in micelles 
in water. We have found that the micelles can 
encapsulate large amounts of liquid volatile 
anesthetics. We have also found that the 
micelles can transition to nanoemulsions by 
adding larger amounts of fluorophilic 
molecules. The particles formed in these 
emulsions have a size comprised between 

150 and 300 nm depending on the preparation method.  The maximum amount of 
anesthetic that can be dissolved in these nanoemulsions is close to 30% v/v, a very 
large amount that makes these nanoemulsions ideal as nanocarriers of fluorinated 
anesthetics. The stability of the emulsions over a period of two months has been 
studied by dynamic light scattering. The nanoemulsions are characterized by extreme 
stability and the Ostwald ripening is minimum. In vivo studies of these emulsions 
have shown that nanoemulsions induced and maintained anesthesia in rats and did 
not show any apparent signs of toxicity. 
 
b. Synthesis and physical–chemical characterization of triblock 
semifluorinated copolymers for the delivery of sparingly soluble anticancer 
and antibiotic drugs.  

A second class of amphiphilic polymeric molecules that we have been working 
on is shown in figure 2.  These micelles are made up of polymers consisting of three 

different parts: a) a 
hydrophilic part (PEG), b) a 
fluorophilic chain, 
(perfluorinated hydrocarbon), 
c) a traditionally hydrophobic 
chain (phospholipid).3 We 
have recently shown that the 
micelles formed by these 
polymers are able to 
encapsulate and deliver  

hydrophobic molecules such as paclitaxel (taxol).  The mean diameter of the 
corresponding micelles was measured to be 15 nm ± 3 nm using dynamic light 
scattering. The critical micelle concentration was 0.65 mM (fluorescence correlation 
spectroscopy). Accordingly, and as expected, these micelles are almost one order of 
magnitude more stable than the micelles made by the corresponding polymers 
without the intermediate fluorocarbon moiety. 
 
2. AMPHOTHROPIC CALIX[4]ARENES 

We have investigated the self-assembly of molecules bearing four perfluorinated 
chains pointing into the same direction.  We have used functionalized calix[4]arenes 
as the scaffold on which to build our amphiphiles. Calix[4]arenes are adaptable 
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scaffolds widely used to generate a variety of supramolecular entities. By introducing 
four fluorous ponytails on the calix[4]arene scaffold, we were able to synthesize novel 
amphiphilic molecules, which are expected to self-assemble in water based on the 
fluorophobic effect. The target molecules combine the structural characteristics of 
amphiphiles and thermotropic liquid crystals: polar head, hydrophobic tails and a 
mesogenic unit. Therefore, they are expected to exhibit amphotropic properties, 
including both thermotropic and lyotropic mesomorphism. The general chemical 
structure of the synthesized calix[4]arene amphiphilic molecules is presented in 
Figure 3. The upper rim is functionalized with either perfluorinated chains directly 
attached to the calixarene core (m=0), or with more flexible mixed alkyl/perfluoroalkyl 
chains (m=3).  

 
We have characterized these molecules by 

differential scanning calorimetry, powder X-ray 
diffraction, polarized optical microscopy.  We 
have analyzed their self-assembling behavior 
by using transmission electron microscopy.  
Differential scanning calorimetry (DSC) and 
temperature-modulated DSC shows a 
transition to a more ordered state before 
melting occurs.  The nature of this state has 
been analyzed by powder X-ray diffraction.4 
The corresponding diffraction spectra show 
sharp Braggs peaks at low angles and the 
absence of sharp peaks at high angles.  This pattern suggests that the molecules 
are organized in a smectic phase with unstructured bilayers, such as smectic phase 
C. We found values of 22Å and 55Å, which are consistent with the bilayer thickness. 
All molecules showed birefringence. Finally, we studied the self-assembling behavior 
of these amphiphiles in water, methanol, chloroform, and perfluorohexane.  We were 
able to establish that the tetraaminodiacetate 1 and the tetraphosphate 2 are able to 
assemble in specific structures strictly depending on the pH of the solvent.5  The 
tetrammonium derivative 3 showed self-assembly behavior strictly dependent on the 
polarity of the solvent. Vesicles were observed in water (confirmed by Rhodamine B 
encapsulation experiments), peculiarly different kind of fibers were observed in 
methanol and chloroform, respectively, whereas micelles were formed in 
perfluorohexane.  The behavior of these molecules is radically different from that 
exhibited by compounds that self-assemble using classical intermolecular 
interactions: Usually, a solvent can be found in which the assembly is not stable.  
Molecule 3 represents the only known case of a compound that self-assembles in 
any solvent.  This example strongly shows the enormous potential of fluorous-phase 
formation for the design of self-assembling materials that could be used in sensing 
devices and as a molecular tool to organize complex self-assembling structures. 

 
[1] Hoang, K. C., Mecozzi, S Langmuir 2004, 18, 7347-7350. 
[2] Fast, J. P., Perkins, M. J., Pearce, R. A., S. Mecozzi, S. 2007, submitted. 
[3] Slaughter, J. M., Schmidt, K. M., Byram, J. L., Mecozzi, S. Tetrahedron Lett. 

2007, 48, 3879-3882. 
[4] Martin, O. M. Yu, L., Mecozzi, S. Chem Comm 2005, 4964-4966.  
[5] Martin, O. M., S. Mecozzi Tetrahedron 2007, 63, 5539-5547. 
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Introduction: 
Considerable interest has been devoted in recent years to block copolymers containing fluoroalkyl 
groups owing to exhibiting the low surface energy and the self-assembled polymeric aggregates 
resembling micelle in aqueous and organic media, which cannot be achieved in the corresponding 
randomly fluorinated copolymers.[1]  From the viewpoints of increasing interests for the 
preparation and applications of fluorinated block copolymers, it is very important to develop new 
preparative methods of fluorinated block copolymers.[2]  In fact, we have already demonstrated 
that two fluoroalkyl end-capped ABA triblock-type cooligomers [RF-(M)n-RF] can be prepared by 
the oligomerizations of fluoroalkanoyl peroxides [(RFCOO)2] with radical polymerizable 
monomers (M) such as acrylic acid and acryloylmorpholine.[3]      These fluoroalkyl 
end-capped oligomers can form the nanometer size-controlled self-assembled molecular 
aggregates in aqueous and organic media.  These fluorinated oligomers could also provide 
suitable host moieties with the aggregation of terminal fluoroalkyl segments in oligomers to 
interact with a variety of guest molecules as shown in Scheme 1.[4]       On the other hand, the  
 
 
 
 
 
 
 
 
 
 
corresponding non-fluorinated oligomers can not form such molecular aggregates, and these 
fluorinated oligomers have a weak entanglement interaction.  In this conference, we would like to 
demonstrate on the preparation and applications of these fluorinated nanocomposites. 
    
 

G : Guest Molecule : Functional Segments

G
G

[A] Fluorinated Oligomer

G

G

[B] Non-fluorinated Oligomer

RFRF

D D

RFRF

D

D

D

RFRF

D
D

D D
D

D

Scheme 1  

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

65



 2 

Preparation of Fluoroalkyl End-capped Oligomer/Guest Molecules Nanocomposites - 
Application to the Surface Modification of Traditional Organic Polymers: 
Self-assembled fluorinated molecular aggregates formed by fluoroalkyl end-capped oligomers 
could interact with fullerene, carbon nanotubes, nanodiamond, low-molecular biocides (hibitane 
and hinokitiol), and metal particles as guest molecules in aqueous and organic media to afford 
nanometer size-controlled fluorinated aggregates - these guest molecules composites.[4]  
Interestingly, these fluorinated nanocomposites were applied to the surface modification of 
traditional organic polymers such as poly(methyl methacrylate) to exhibit not only an oleophobic 
property imparted by fluorine but also a unique characteristic related to the guest molecules in 
composites on their surface (see Fig. 1). 
                                                           
 
 
 
 
 
 
 
 
 
 
 
     In addition, we have succeeded in preparing fluoroalkyl end-capped oligomer/silica 
nanocomposites-encapsulated a variety of guest molecules such as stable organic radicals, ionic 
liquids and low-molecular biocides.[4]    
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1    Interaction of hibitane with the self-assembled molecular aggregates of   
               fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomers - a good 
               surface antibacterial activity on polymer surface with the oleophobicity imparted by 
               fluorine
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 3 

Preparation of Fluoroalkyl End-capped Oligomeric Nanoparticles Possessing a Lower 
Critical Solution Temperature (LCST) Characteristic in Organic Media: 
It is well-known that organofluorine compounds containing longer fluoroalkyl groups have strong 
oleophobic and hydrophobic characteristics toward a variety of solvents including water.    The 
introduction of both longer fluoroalkyl and oleophilic groups into polysoaps is of particular 
interest from the developmental viewpoints of novel temperature sensitive polymers, which should 
exhibit the LCST characteristic in organic media.  We found that fluoroalkyl end-capped 
2-acrylamido-2-methylpropane sulfonic acid cooligomeric nanoparticles containing adamantyl 
segments, which were prepared by the reactions of fluoroalkanoyl peroxides with the 
corresponding monomers (see Scheme 3), could exhibit a LCST in organic medium (t-butyl  
 
 
 
 
 
 
 
 
 
alcohol) around 52 oC.[5]   
 
 
 
 
 
We believe that this is the first report for the LCST behavior in organic media.    
 
References: 
[1] Imae, T. Curr. Opinion Colloid Interface Sci. 2003, 8, 307. 
[2] Berret, J.-F.; Calvet, D.; Collet, A.; Viguier, M. Curr. Opinion Colloid Interface Sci. 2003, 8, 
296. 
[3] Sawada, H. Chem. Rev. 1996, 96, 1779.  
[4] a) Sawada, H.; Ikeno, K.; Kawase, T. Macromolecules 2002, 35, 4306. 
b) Sawada, H. Prog. Polym. Sci. in press; 
c) Sawada, H. Polym. J. in press. 
[5] Mugisawa, M.; Ohnishi, K.; Sawada, H. Langmuir in press. 
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Glycoconjugates, i.e., glycopeptides and glycolipids, play an important role in 
biological processes, such as cell recognition, cell adhesion, immunogenic 
recognition and so on.  Proteins almost have an oligosaccharide on their side-chain, 
and the carbohydrate moiety is a post-translational product.  The study of 
carbohydrates (glycomics) is very interesting and important as a postgenome and 
postproteome. In order to study the functions of oligosaccharides, it is necessary to 
rapidly and efficiently synthesize oligosaccharides. 
 
 
 
1) Synthesis of monosaccharide unit using a heavy fluorous tag 
 
Our group has reported the rapid synthesis of oligosaccharides [1]. However, 
efficiency in oligosaccharide synthesis was limited to the glycosylation step. 
Monosaccharide units such as glycosyl donors and acceptors were still prepared by 
classical organic synthesis, requiring many steps and much labor. This has been one 
of the major and most intractable problems in oligosaccharide synthesis.The efficient 
synthesis of monosaccharide units is essential for practical oligosaccharide synthesis. 
We will present the efficient synthesis of two monosaccharides, the glycosyl acceptor 
and donor, by using the heavy fluorous tag method will be presented. 
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Scheme 1. Heavy fluorous tag for monosaccharide unit synthesis 

 
As our model of monosaccharide units, the glycosyl acceptor 7 was prepared. 
Fluorous tag 2 was attached to per-O-acetyl-β-D-glucopyranose by BF3·OEt2 
(glycosylation). All Ac groups of 3 were removed by NaOMe. Treatment with 
benzaldehyde dimethylacetal gave compound 4, which was benzylated to give 5. 
Cleavage of the benzylidene acetal of 5 by TFA containing 5% H2O gave diol 6. The 
fluorous intermediate 3–6 were each extracted with fluorous mixed solvent 
(MeOC4F9 : FC7213 = 4:1) by partitioning the product mixtures between the fluorous 
mixed solvent and an organic solvent such as 95% aq. MeOH or 95% aq. MeCN. No 
further purification such as silica-gel column chromatography was conducted. Finally, 
selective benzoylation to primary alcohol gave crude 7, which was purified by the 
fluorous partition step followed by a single silica-gel column chromatography, and 
then the glycosyl acceptor 7 was obtained with 88% overall yield from the starting 
material 2. In this paper, the separating funnel symbol indicates that the fluorous 
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partition step was followed by the next step without further purification. The column 
symbols show that each crude product was purified by silica-gel column 
chromatography. 
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Scheme 2. Synthesis of glycosyl acceptor 
 
 
Next, glycosyl donor 11 was synthesized by the fluorous method. Glycosylation of the 
fluorous tag 2 with per-O-acetyl-β-D-galactopyranose, followed by deacylation and 
the selective benzylation using Bu2SnO gave 8. Acetylation and hydrogenation in the 
presence of Pd(OH)2 have 9, followed by monochloroacetylation to give 10. Finally, 
cleavage of the fluorous tag using ZnBr2 and AcBr produced crude 11, which was 
extracted into the organic layer by partitioning between fluorous mixed solvent 
(MeOC4F9 : FC72 = 4:1) and 95% aq. MeCN. After single silica-gel column 
chromatography, the glycosyl donor 11 was obtained with 58% overall yield from 2. 
Fluorous tag 2 was recovered from the fluorous layer as acetate 12 with 70% yield 
and was recyclable after deacetylation (Scheme 3). 
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2) Highly Fluorinated Thioglycosides as Glycosyl Donors 
 
Highly fluorinate thioglycosides [2] were 
prepared from an almost odorless 
1H,1H,2H,2H-perfluorodecane thiol and 
per-O-acetyl-β-D-glucopyranose. These 
thioglycosides were activated by 
N-bromosuccinimide-Bu4NOTf to afford the 
O-glycosides in good yields. The thiol was 
easily recovered via the partition between 
fluorous solvents and organic solvents 

S
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C8F17 S 2
ROH

O OR
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3) Oligosaccharide Synthesis by Fluorous Mixture method 
 

Solution-phase mixture synthesis is more 
suitable for preparation of oligosaccharide 
library than solid-phase technique. Because (1) 
solid reagents (molecular sieves, insoluble 
metal lewis acid, and so on) are usually used; 
(2) due to the not so high reactivity of 
oligosaccharide synthesis, monitoring of 
glycosylation using usual manner (TLC, NMR, 
etc) is necessary. From these reasons, A 
fluorous mixture synthesis [3] is employed to 
prepare the oligosaccharide library. For this 
study, the novel alkoxyphenyl-type fluorous tag 
was prepared and disaccharide synthesis was 
demonstrated.  
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The Pummerer reaction has evolved into a useful tool for the synthesis of 

heterocyclic compounds.[1] We have developed a new, general strategy for triggering 

Pummerer cyclizations that involves the addition of thiols to reactive carbonyl 

compounds such as glyoxamides 1.[2] The resultant hemi-thioacetals can be 
activated, leading to thionium ion generation and to Pummerer cyclization. 

 

The use of a thiol containing a phase tag results in cyclative-capture of the 

glyoxamide substrate. The choice of a fluorous thiol[3] allows reactions to be 

monitored conveniently whilst also allowing rapid, phase-tag assisted purification 

using fluorous solid phase extraction (FSPE).[4] Our approach utilizes a fluorous 

phase scavenging reagent in a novel manner. Convenient modification of the fluorous, 

heterocyclic scaffolds 2 can then be carried out and the products again purified 
rapidly using FSPE. We have shown the approach to compatible with a variety of 

modification strategies including palladium-catalyzed cross-coupling technology. 

Upon completion of the desired sequence, the fluorous tag can be removed in a 

traceless manner, allowing access to a diverse collection of heterocyclic products 

(Scheme 1). 
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Scheme 1 Fluorous Pummerer cyclative–capture strategy 
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Our interest in the application of lanthanide reagents in phase tag-assisted synthesis 

has lead us to develop complimentary, reductive and oxidative strategies for the 

traceless removal of the fluorous tag that use Sm(II) and Ce(IV) reagents, 

respectively. 

 

Finally, we have developed a portfolio of sequential tag-cleavage/cyclization 

processes using SmI2.[5] For example, on cleavage of the tag from oxindole 3 using 
SmI2, the intermediate Sm(III)-enolate undergoes intramolecular alkylation to give the 

spirocycle 4 (Scheme 2). Changing the order of addition of SmI2, gives 

indolocarbazole 5 as the major product. Thus, by changing the order of addition of 
SmI2, the mode of sequential tag-cleavage/cyclization can be controlled to access 

two very different heterocyclic systems (Scheme 2). 
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Scheme 2 Sequential tag-cleavage/cyclization 
 

Recent, unpublished work on the development of sequential fluorous 

tag-cleavage/cyclization processes and their application in library synthesis will also 

be described. 
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 Chemical sensors based on receptor-doped polymeric membranes were 
developed for over 60 analytes. They are routinely used worldwide in clinical 
chemistry for well over a billion measurements per year. Unfortunately, their lifetimes 
are limited by lipids and hydrophobic proteins that adsorb onto or are extracted into 
these membranes. This hinders their wider use, in particular for the long-term 
implantation into the human body. Perfluorocarbon matrixes have great promise to 
solve this problem of sensor lifetime because their low polarity limits the solubility of 
lipids and proteins. The extraordinarily low polarity of perfluorocarbons is illustrated 
by the following example: On the π* scale of solvent polarity, water has a π* value of 
1, hexane defines 0, and perfluorooctane has the astounding value of –0.41. Indeed, 
it is well documented that lipids are poorly soluble in perfluorocarbons. Therefore, 
nonpolar perfluorinated membrane matrixes do not lose their selectivies when 
exposed to biological fluids containing lipids and hydrophobic proteins. Moreover, 
nonpolar perfluorinated matrixes (i) exhibit much higher selectivities than 
conventional receptor-doped sensor matrixes because lipophilic interferents are 
hardly solvated in perfluorinated phases, (ii) are chemically very inert, and (iii) were 
shown to promote cell growth on their surface to a much lesser extent than most 
polymers presently used for receptor-based sensors.  
 Despite the attractiveness of perfluorinated phases, receptor-based sensor 
with a nonpolar perfluorinated matrix have only been introduced recently [1-3]. This 
research has developed perfluorinated polymeric matrixes and fluorophilic ion 
exchanger sites required for the preparation of receptor-based sensors. We have 
shown that a potentiometric cation exchanger sensor based on a fluorous membrane 
doped with the highly fluorophilic 
tetraphenylborate derivative, 2, has a 
remarkably wide range of selectivities 
that exceeds the selectivity range of 
conventional polymeric membranes by 8 
orders of magnitude. The fluorous 
character of these sensing membranes 
explains the formation of ion pairs of 
unprecedented strength. Ion pair 
formation constants in the fluorous 
perfluoroperhydrophenanthrene (1) 
exceed any previously reported values 
for ion pair formation in nonpolar solvents. 
 Our initial studies with fluorous sensing membranes were performed with a 
tricyclic fluorocarbon. The absence of specific ion solvation explains the 
extraordinarily high potentiometric selectivities. However, many popular 
perfluorinated solvents contain heteroatoms, such as the nitrogens in 
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perfluorotrialkylamines and the oxygens in perfluoropolyethers. Also, many 
fluoropolymers contain ether oxygens (see below). The literature contains hardly any 
and then only qualitative evidence about the coordinating properties of heteroatoms 
in perfluorocarbons. Hence, understanding the coordination properties of 
heteroatoms in perfluorocarbons is not only essential to the development of chemical 
sensors, but is also of substantial fundamental interest. We showed that 
perfluorotripentylamine has a pKa below –0.5 and that a perfluorotetraether binds to 
Li+ and Na+ with the extremely small binding constants of 2.0 and 2.6 M-1, 
respectively [2]. This can be explained by the high electronegativity of the fluorine 
substituents, which drastically reduce the Lewis basicity of the ether and amino 
groups in these compounds, and is consistent with the nearly planar structure of 
perfluorotrialkylamines.   
 In an effort to extend this work to anion sensing, we recently also developed a 
highly fluorophilic methyltriphenylphosphonium salt. Anion-selective electrodes based 
on this compound show a very high selectivity for the environmental pollutants 
perfluorooctanoate and perfluorooctane sulfonate, which can be detected with 
nanomolar detection limits. Moreover, we doped these fluorous sensing membranes 
with fluorophilic receptors [3]. Fluorous pH ion-selective electrodes, each comprised 
of perfluoroperhydrophenanthrene, sodium tetrakis[3,5-bis(perfluorohexyl)phenyl]-
borate, and one of four fluorophilic H+-selective ionophores were prepared. All the 
ionophores are highly fluorinated trialkylamines containing three electron withdrawing 
perfluoroalkyl groups shielded from the central nitrogen by alkyl spacers of varying 
lengths. Their selectivities for H+ over K+ follow trends expected based on shielding 
and the length of the perfluoroalkyl chains. To the best of our knowledge, the 
selectivities measured for a [CF3(CF2)7(CH2)5]3N-doped sensor are the highest 
reported for an ionophore-based pH sensor, confirming the exceptional selectivity 
expected for ion-selective sensors with fluorous matrixes. 
 Our initial sensor results were obtained with inert porous Teflon support 
impregnated with fluorous solvents (Fig. 1, [1-3]). This system is ideal for 
fundamental studies since it can be used with any fluorous solvent. However, for use 
in “real life” applications we have been 
also developing fluorous solvent 
polymeric membranes. Many perfluoro-
polymers such as Teflon are at least 
partially crystalline in nature and are 
not suitable as matrixes for sensing 
membranes because they do not 
dissolve receptors. Even if they would, 
the electrical resistance of such 
membranes would be too high for 
practical purposes. The preparation of 
perfluoroelastomers with covalently 
attached receptors is an intriguing 
possibility that may be use in future 
studies, but it is complicated by the fact 
that conventional perfluoroelastomers 
contain cross-linking units with metal 
coordinating properties. Therefore, we 
chose to focus at least initially on 
amorphous perfluoropolymers 

Fig. 1: Schematic of an ion-selective 
electrode based on a fluorous liquid 
phase supported by an inert porous 
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plasticized with inert fluorous low-molecular-weight plasticizers.  
 The perfluoropolymers Cytop (3), Teflon AF1600 (4), and Teflon AF2400 (5) 
were plasticized with perfluoroperhydrophenanthrene (6), perfluoro(1-methyldecalin) 
(7), a perfluorotetraether with three trifluoromethyl side groups and one hydrogen 
atom (8), and a linear perfluorooligoether with an average of 14.3 ether groups per 
molecule (9). 
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 While plasticization was successful for all polymer–plasticizer combinations, 
the different plasticizers affected the blends very differently [4]. The limit of 
plasticization beyond which further increases in the plasticizer volume fraction do not 
affect the glass transition temperature, Tg, any more was observed for some blends, 
while others exhibited no such limit at all. Also, the limit of miscibility ranged from as 
low as 20% for the cyclic perfluorocarbons and Teflon AF1600 to complete miscibility 
at any volume fraction. The limit of miscibility observed for the cyclic plasticizers 6 
and 7 only with Teflon AF1600 and Teflon AF2400 suggests that the compatibility of 
the cyclic perfluorocarbons with the polymers decreases as the content of the 
5-membered rings in the polymer increases.  A similar trend is also observed in 
blends with tetraether 8, even though this compound is more compatible with Teflon 
AF1600 than the cyclic perfluorocarbons 6 and 7, as suggested by the absence of a 
limit of miscibility in those blends.  While all polymers were successfully plasticized, 
the blends of Teflon AF2400 or Teflon AF1600 with high content of polyether 9 
provided with as low as –114 ºC the lowest Tg values of all fully miscible blends.  
The occurrence of two glass transitions in an intermediate range of plasticizer volume 
ratios for these two latter types of blends is compatible with the Lodge-Mcleish model 
and is due to the occurrence of distinct local environments rather than macroscopic 
phase separation. Both receptor-free and receptor-based polymeric membranes 
based on plasticized Teflon AF2400 exhibit theoretical response slopes and high 
selectivities. 
 
Acknowledgment: This project was funded by the National Science Foundation 
(CTS-0428046) and the National Institute of Health (1R01 EB005225-01). We 
gratefully acknowledge collaboration with the groups of J. A. Gladysz and J. Rábai. 
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Over the past three years, we endeavored to further advance the field of fluorous 

chemistry and three of our outcomes will be highlighted in the lecture. The common 

feature of these works was that the fine tuning of the phase tag was the key of the 

success. 

 

1. Fluorous click chemistry as a novel tagging method 

 

Although several fluorous compounds have been synthesized (and some of them are 

commercially available), their synthesis are mostly challenging due to the 

cumbersome purification steps. Fluorous chemists often exposed to this synthetic 

problem which simply stemmed from the highly hydrophobic character of the 

perfluorinated tag. As a consequence, a synthetic route which has several fluorous 

intermediate was avoided and the attachment of the perfluorinated phase label 

attempted in the last synthetic steps. Despite important advances, there was a need 

for additional methodology for introducing perfluorinated tag.  

 

Triggered by the recent results of Professor Sharpless in the field of click chemistry, 

we anticipated that the fluorous version of their catalytic Huisgen reaction can 

broaden the existing synthetic potential in fluorous chemistry. Therefore we tested the 

ability of different fluorous azides to participate in click chemistry and optimized their 

reaction conditions. Moreover, we have demonstrated the efficiency and practical 

simplicity of this approach in the synthesis of a fluorous cinchona alkaloid. [1] 
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2. Recoverable CBS methodology 

 

Enantioselective borane reduction of ketones in the presence of chiral proline based 

oxazaborolidines (CBS catalyst) has emerged as a standard method for the synthesis 

of chiral secondary alcohol. To facilitate the recovery of this useful catalyst (often 

used in pharmaceutical industry) and simplify reaction conditions, various 

polymer-bound heterogeneous analogs were synthesized and studied. However, 

these challenges have generally appeared to be associated with reduced 

enantioselectivity and reactivity. These experiences indicated that the diffusional 

limitation inside the polymer support slowed down the rate of catalyzed reduction so 

that the competing, non-selective reduction in the bulk phase decreased the overall 

enantioselectivity.  

To avoid the diminished kinetics of the biphasic, resin mediated reactions, we 

conceived that fluorous chemistry as a homogenous-phase tagging approach could 

offer solution for the above problems. Therefore we initiated the synthesis of the 

fluorous analog of CBS catalyst and employed it in enantioselective reduction of 

ketones. In order to minimize the interference with the catalyst active site, we 

envisaged a fluorous analog which has the perfluorinated tags in the para position of 

the phenyl residue. Our fluorous analog of CBS catalyst proved to be an efficient and 

recoverable catalyst system with several practical advantages.[2]  

 

 

3. The fluorous Lawesson’s reagent  

 

Organosulfur compounds occupy a uniquely important place in organic synthetic 

chemistry due to their rich and versatile chemistry. In parallel, this class of 

compounds has long been of widespread interest by virtue of their ubiquitous 

biological activity. Thionation, the conversion of the carbonyl group to thiocarbonyl, is 

widely applied procedure for the synthesis of organosulfur compounds. Among the 

reagents affecting this transformation, the Lawesson’s reagent (LR) excels in 

efficiency and broad utility. Several LR protocols have been reported in the literature 

which demonstrate the utility of this powerful reagent, but also concominantly 

revealing the shortcomings that accompany its usage. The lack of extractive 

procedure to remove the LR-derived byproducts is a commonly cited disadvantage of 
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this reagent. In some cases the requisite chromatographic separation of the desired 

product from the LR byproducts can be really cumbersome or impossible which limits 

the reagent utility.  

 

In order to avoid the chromatographic purification step after LR application, we were 

intrigued with the idea of synthesizing and utilizing a fluorous version of LR. Finally, 

we proved that the attached perfluorinated tag does simplify the product isolation via 

a fluorous reversed-phase solid extraction technique. This approach offered a 

convenient solution for a long-standing separation problem and represented the first 

chromatography-free Lawesson protocol. Our fluorous technique combined with 

microwave application allowed the rapid synthesis and isolation of organosulfur 

compounds such as thioamides and thioesters.[3] 

 

 

 

[1] Kaleta, Z.; Egyed, O.; Soós, T. Org. Biomol. Chem. 2005, 3, 2228. 

[2] Dalicsek, Z.; Pollreisz, F.; Gömöry, Á.; Soós, T. Org. Lett. 2005, 7, 3243. 
[3] Kaleta, Z.; Tárkányi, G.; Gömöry, A.; Kálmán, F.; Nagy, T.; Soós, T. Org. Lett. 

2006, 8, 1093. 
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Fluorous liquid-liquid extraction has traditionally used perfluorocarbons such as 
perfluorohexanes (FC-72) and perfluoromethylcyclohexane (PFMCH) as the fluorous 
solvent with various organic solvents.  Perfluorocarbons, while exceptionally fluorous, 
are also very non-polar and have generally poor solvating power.  In order to 
achieve practical fluorous partitioning coefficients it is, therefore, necessary to use 
“heavy” fluorous reagents, catalysts, and ligands, which have multiple fluorous tags.  
If the fluorous molecule is found to have a less than desirable fluorous partitioning 
coefficient, the traditional fluorous approach has been to add more fluorous chains, in 
other words, a substrate tuning approach.  Previously, we have reported1 a solvent 
tuning approach, where both the fluorous phase and the non-fluorous phase can be 
tuned to effect the desired partitioning coefficients without resorting to the extra cost 
and effort associated with substrate tuning.  The fluorous solvents used included 
hydrofluoroethers (HFEs) which have very favorable environmental characteristics 
along with greater inherent salvation power than perfluorocarbons.  This 
presentation expands upon those results by examining more closely other solvent 
combinations and by beginning initial applications of the principles learned. 
 
Miscibility tests between sixty pairs of fluorous and organic solvents have been 
performed, and a number of biphasic systems based on hydrofluoroether solvents 
been identified.  Mutual solubilities of a series of fluorous and organic solvents have 
been measured to ascertain the compositions of the biphasic systems.  A qualitative 
solvent tuning strategy based on solvent polarity and fluorophilicity/phobicity is 
introduced.  Solvent tuning is then used to modulate the partition coefficients (P) of 
triarylphosphines with 0-3 fluorous tags.   
 

 
 

reactants products

fluorous
catalyst

fluorous 
catalyst 

Recycle

“Light fluorous compounds”

Solvent 
Tuning 
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Initial applications include the fluorous liquid-liquid extraction of moderately fluorous 
reagents in three reactions: 
 

• Fluorous imidazolidinone catalysts in Diels-alder reactions 
• Fluorous Mitsunobu reactions 
• Fluorous CBS reactions 
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As can be seen, the use of HFE’s shows exceptional promise in not only lowering the 
overall fluorous content of fluorous catalysts and reagents, but also in utilizing more 
environmentally benign solvents. 
 
 
[1] Yu, M. S.; Curran, D. P.; Nagashima, T. Organic Letters, 2005, 7, 3677. 
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Since 2002, we have been studying on the rational design of highly functional 
catalysts based on acid–base combination chemistry.[1]  In this lecture, ultra-light 
fluorous organoammonium salt-catalyzed dehydrative condensation reactions[2] 
and  cyclization reactions[3] directed towards green and sustainable chemistry will 
be presented. 

Acid-catalyzed dehydration reactions such as the ester condensation reaction 
are some of the most fundamental reactions, and more environmentally benign 
alternatives are in strong demand by the chemical industry.  Recently, some 
ammonium salts have been developed as mild Brønsted acid dehydration 
catalysts.  In 2000, Tanabe and co-workers reported that diphenylammonium 
triflate ([Ph2NH2]+[OTf]–) efficiently catalyzed the ester condensation reaction of 
carboxylic acids with equimolar amounts of alcohols.[4]  In 2005, we reported bulky 
diarylammonium pentafluorobenzenesulfonates 1a and 2a, which are much milder 
Brønsted acids than the corresponding ammonium triflates, as extremely active 
ester condensation catalysts (Figure 1).[2]   

 

NH2

Ph

Ph

[O3SR]

1a:  R = C6F5

1b:  R = Tol

NH2

i-Pr

i-Pr

[O3SR]

2a:  R = C6F5

2b:  R = Tol  
Figure 1.  Bulky diarylammonium arenesulfonates 
 

Interestingly, the most bulky 1a, which was an equimolar mixture of 
N-(2,6-diphenylphenyl)-N-mesitylamine and pentafluorobenzenesulfonic acid 
(C6F5SO3H), exhibited higher catalytic activity than C6F5SO3H for dehydrative ester 
condensation reactions of 4-phenylbutyric acids with an equimolar amount of 
cyclododecanol under the reaction conditions without the removal of water, despite 
the weaker acidity of 1a (Figure 2).  In contrast, 2a showed catalytic activity similar 
to that of C6F5SO3H, while the catalytic activity of [Ph2NH2]+[OTf]– was weaker than 
that of C6F5SO3H.  It was supposed that the hydrophobic environment created 
around the ammonium protons in the diarylammonium 
pentafluorobenzenesulfonates effectively promoted the dehydrative condensation 
reaction and their steric bulkiness suppressed the dehydrative elimination of 
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secondary alcohols to produce alkenes.  However, it was unclear about the 
reason yet. 
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Figure 2. Ester condensation reaction of 4-butyric acid with an equimolar amount of 
cyclododecanol catalyzed by 1a (◆), 2a (■), C6F5SO3H (●) and [Ph2NH2]+[OTf]– (▲). 
 

In the course of our continuing study, we found that bulky diarylammonium 
pentafluorobenzenesulfonates promoted the dehydrative cyclization of 
1,3,5-triketones (3) to γ-pyrones (4)3 much more effectively than the ester 
condensation reaction (Figure 3).  1,3,5-Triketones 3 are generally less polar than 
carboxylic acids and alcohols.  If the local hydrophobic environment created 
around the ammonium protons in bulky diarylammonium 
pentafluorobenzenesulfonates is the key to the unusual acceleration of dehydration 
reactions, it should promote the dehydrative cyclization of 3 much more efficiently 
than the ester condensation of carboxylic acids and alcohols.  We investigated the 
relationship between the catalytic activity and the steric and/or stereoelectronic 
factors of diarylammonium sulfonate catalysts for the dehydrative cyclization of 3 in 
detail. 
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Figure 3. Dehydrative cyclization of 4,6-dimethylnonan-3,5,7-trione (3a) (0.2 mmol) 
in solvent (4 mL).  The yield of γ-pyrone 4a was evaluated by HPLC analysis. 
 

Furthermore, we discuss the microscopic hydrophobic environment created in 
the aggregated diarylammonium sulfonates based on a consideration of their X-ray 
single-crystal structures (Figure 4).  The X-ray crystallographic analysis of 5, which 
might be the real active species, suggested that stabilization of the cyclic ion pair by 
intermolecular π-π interactions between hydrophobic bulky aryl groups was crucial 
for the creation of the hydrophobic environment.  It is conceivable that the local 
hydrophobic enviroment created by the tight aggregation of 1a in less polar solvent 
efficiently promoted dehydrative reactions. 
 

 

Figure 4. X-ray single-crystal structure of 5.  Upper, ORTEP drawing; lower, 
space-filling drawing.  F, green; N, blue; O, red; S, yellow 

 
References 
[1] For an account article, Ishihara, K.; Sakakura, A.; Hatano, M. Synlett 2007, 

686–703. 
[2] (a) Ishihara, K.; Nakagawa, S.; Sakakura, A. J. Am. Chem. Soc. 2005, 127, 

4168–4169.  (b) Sakakura, A.; Nakagawa, S.; Ishihara, K. Tetrahedron 2006, 62, 
422–433. 

[3] Sakakura, A.; Watanabe, H.; Nakagawa, S.; Ishihara, K. Chem. Asian J. 2007, 
2, 477–483. 

[4] Wakatsugi, K.; Misaki, T.; Yamada, K.; Tanabe, Y. Tetrahedron Lett. 2000, 41, 
5249–5252. 

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

91



Kazuaki Ishihara, Professor 
Graduate School of Engineering, Nagoya University 
Furo-cho, Chikusa, Nagoya 464-8603, Japan 
Phone: +81-52-789-3331;  Fax: +81-52-789-3222 
E-mail: ishihara@cc.nagoya-u.ac.jp 
Education and Experience 
1986  B.Eng. degree, Nagoya University 
1988  M.Eng. degree, Nagoya University 
1988  Visiting scholarship (June to August) 

with Prof. C. H. Heathcock (University of California, 
Berkeley, USA) 

1991  D.Eng. degree, Nagoya University 
1991-1992  Postdoctoral fellowship with Prof. E. J. Corey (Harvard University, USA) 
1992-1997  Assistant Professor in Nagoya University 
1997-2002  Associate Professor in Nagoya University 
2002-      Professor in Nagoya University 
Awards and Honors 
1994 Inoue Research Award for Young Scientists (Inoue Foundation for Science) 
1996 Young Chemist Award (The Chemical Society of Japan) 
2001 Thieme Chemistry Journal Award (Thieme) 
2003 Green & Sustainable Chemistry Award from the Minister of Education, Culture, Sports, Science 

and Technology (Green & Sustainable Chemistry Network) 
2005 JSPS Prize (JSPS) 
2005 BCSJ Award (Bulletin of the Chemical Society of Japan) 
2006 0th International Conference on Cutting-Edge Organic Chemistry in Asia Lectureship from 

Taiwan and Korea (Asia Core Program, JSPS) 
2007  Japan/UK GSC Symposium Lectureship (The Chemical Society of Japan) 
Research Interests 
His research interests include asymmetric catalysis, biomimetic catalysis induced by artificial enzymes, 
dehydrative condensation catalysis toward green & sustainable chemistry, and acid–base combination 
chemistry. 
Selected Publications 
(1) Design of highly functional small-molecule catalysts and related reactions based on acid–base 
combination chemistry, Ishihara, K.; Sakakura, A.; Hatano, M. Synlett (an account article) 2007, (5), 
686–703. 
(2) Biomimetic enantioselective halocyclization of polyprenoids induced by nucleophilic phosphines, 
Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 455(7130), 900–903. 
(3) Rhenium(VII) oxo complex-catalyzed direct condensation of phosphoric acid with nearly equimolar 
amounts of alcohols, Sakakura, A.; Katsukawa, M.; Ishihara, K. Angew. Chem. Int. Ed. 2007, 46(9), 
1423–1426. 

 

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

92



Oral Session



PHASE TRANSFER CATALYSIS GOES FLUOROUS  
Gianluca Pozzia, Silvio Quicia, Richard H. Fishb  

 
a CNR-ISTM, via Golgi 19, Milan, 

20133 Italy 
 

gianluca.pozzi@istm.cnr.it 
 

b Lawrence Berkeley National Laboratory, University of California, Berkeley, 
CA 94720, USA 

 
rhfish@lbl.gov 

 
 
 

Phase-transfer catalysis (PTC) is a powerful technique that accelerates reactions 
between two or more substances present in two or more immiscible phases, and 
which continues to attract considerable scientific and practical attention [1]. Indeed, 
PTC offers considerable advantages over conventional procedures, including the use 
of inexpensive inorganic reagents, high reaction rates and selectivities under mild 
conditions, and work-up simplicity. The need to eliminate hazardous solvents and 
reagents from laboratory and industrial practices provides another major driving force 
for developing PTC processes [2]. Nevertheless, volatile/halogenated solvents, which 
are partly discharged into the atmosphere with negative environmental effects, are 
still widely used in many reactions catalyzed by traditional PT catalysts (e.g., 
tetraalkylammonium, tetraalkylphosphonium salts, or crown ethers). Replacement of 
these solvents with an alternative reaction media is entirely feasible if suitable PT 
catalysts are made available. This would further reduce emissions to the environment 
and, as verified in the case of supercritical fluids and ionic liquids, facilitate catalyst 
recovery [2]. Alternatively, a few examples of fluorous azacrown ethers, [3] 
ammonium salts, [4] and phosphonium salts [5] have also been reported, but 
surprisingly, PTC in fluorous media has been largely ignored. Therefore, we describe 
the synthesis of a series of dibenzo-18-crown-6 ether derivatives (Rf-CE) endowed 
with fluorous phase affinity (Figure 1).  
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Figure 1 
 
Furthermore, we were also intrigued by the prospect of conducting anion promoted 
reactions in perfluorocarbons with Rf-CE derivatives, which, to the best of our 
knowledge, have never been utilized together in PTC reactions.  Solubilization of the 
potassium salts of anions, KA, in these hydrophobic solvents with Rf-CE derivatives 
might be readily achieved by forming fluorophilic ion-pairs, [Rf-CE-K]+A- (Scheme 1).  
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Their catalytic behaviour in the bromine/iodine Finkelstein exchange reaction 
(Scheme 1, Table 1) has been investigated, to test this new anion exchange concept, 
under various conditions that provided insights into a manifold of parameters, such 
as solubility of the Rf-crown ether in fluorocarbons, residual electron-withdrawing 
effects of the Rf-fluorous ponytails, dielectric constant of the solvent, and the 
discovery of new phase transfer anion reactions; this novel approach could influence 
the efficiency of the PTC process, and will allow separation of the product from the 
[Rf-CE-K]+A- catalyst. Preliminary results (Table 1) showed the viability of this new 
fluorous PTC approach, and will be discussed in-depth 
 

 
Table 1. Finkelstein reaction in perfluorodimethylcyclohexane (PFDMC)a 

 
Entry T 

(°C) 
Catalyst  Time 

(h) 
TONb TOFc 

(h-1) 
1 90 Rf-CE , n = 0  24 12.5 0.52 
2d 90 Rf-CE , n = 2  24 32 1.33 
3 90 Rf-CE , n = 3  15 47.5 3.16 
4 110 Rf-CE, n = 0  24 4 0.17 
5 110 Rf-CE , n = 2  24 43.5 1.81 
6 110 Rf-CE , n = 3  12 48 4.00 

 
a Reaction conditions: Solid/Liquid PTC (S/L), Substrate = 1 mmol, KI = 5 mmol, 

Catalyst = 2 mol%, PFDMC = 4 ml. Selectivity for C8H17I > 98%. 
b TON = mmol converted substrate/mmol catalyst.  
c TOF = mmol converted substrate/(mmol catalyst x hour).  
d Rf-CE , n =0, is soluble in PFDMC at RT, while Rf-CE, n= 2 and Rf-CE, n= 3 are 

soluble in PFDMC at 90 °C. 
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Abstract
Two highly fluorinated bipyridine derivatives, (4,4 -bis(RfCH2OCH2)-2,2 -bpy) {Rf =
n-C10F21 (1a), n-C10F23 (1b)}, have been reported by our group before. The reaction of ligands
1a-b with [Pd(CH3CN)2Cl2] results in the novel Pd complexes
[PdCl2(4,4 -bis-(RfCH2OCH2)-2,2 -bpy)] where Rf= n-C10F21 (2a), n-C10F23 (2b), respectively.
The Pd complexes 2a-b are pale yellow solids. The complexes 2a-b have been reported
before as good catalyst precursors for fluorous biphasic system. Soluble in polar solvents (e.g.
DMF) when temp above 130 C, but insoluble in DMF at room temp, 2a-b can readily be
used and recovered under the thermomorphic mode. In other words, the reaction can be
homogeneously carried out at high temperature (~140 C), and the reaction mixtures and
catalyst can then be heterogeneously separated at room temp after the reaction. To the best of
my knowledge, this phenomenon demonstrates the first time the fluoro-ponytailed Pd catalyst
which homogeneously catalyzes the Heck reaction and precipitates at the end of reaction.

Keywords: fluorinated bipyridine, fluorous biphasic system, thermomorphic, homogeneously,
catalytic, heterogeneously

Homogeneous catalysis is a powerful tool in highly active and selective organic
transformations. However, the large majority of catalytic processes in industry are still
conducted under heterogeneous conditions, since the separation of the catalysts from the
product mixture is easier than in traditional homogeneous systems. Therefore, besides
developing homogeneous catalysts that can be used in very low concentrations for which
the catalyst quantity is at the ppm level, and thus separation is often not necessary efforts
have been made to provide heterogeneous reactions which need the catalysts to be fixed to the
solid supporter [1]. In other words, scientists have been trying to find a recoverable catalyst
which precipitate at the end of reaction [2]. Furthermore, the thermomorphic catalysis [3,4]
with or without the fluorinated solvents is the new approach to solve the problems of
separation and catalytic efficiency in the field. Bergbreiter et al. [1] used polymer-based
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thermomorphic system whose polymer was not totally dissolved at the high temperature.
Gladysz et al. [3,4] have used the fluorinated phosphine, not fluorinated metal catalyst, to
catalyze the addition of unsatuarated reaction without the use of expensive fluorous solvents.
Fan et al. [5] have also reported the use of the thermomorphic system with non-fluorous
catalyst for asymmetric hydrogenation. However, the recovery and reuse with non-fluorous
catalysts seem not to be as good as with fluorous catalysts.

Fluorinated compounds show several unusual physical properties from their hydrocarbon
counterparts- among them are fluorophilicity, thermal stability, thermomorphic property etc.
One of the unique features of thermomorphic catalysis is that the heterogeneous reaction
mixtures, which consist of the soluble reactants and insoluble catalyst, become homogeneous
during the reaction when being heated and then could be readily separated by cooling the
reaction mixtures. Thus, the use of expensive fluorinated solvents can then be avoided by
using this type of catalysis. Take advantage of the thermomorphic property of the
fluorinated compounds, reported here are the Pd-catalyzed carbon and carbon bond forming
reactions (e.g. Heck reactions) under thermomorphic condition. The catalyst 2a-b with
fluorous-ponytail are soluble in polar solvents only at the elevated temperature and precipitate
out at the end of reaction just at room temp or below.

A B C

Scheme 1. Thermomorphic mode of catalysis; (A) Insoluble Pd catalyst at bottom (B)
Homogenous catalysis (C) Pd catalyst recovered after reaction

Reported here is the new application of Pd complexes 2a-b in the thermomorphic condition.
Besides their application under FBC, they also show good thermomorphic property-being
soluble in DMF at 140 oC and hardly soluble at room temp, in the C-C forming Heck reaction.
As shown in Scheme 1, Pd complex 2a-b does not dissolve in DMF at room temp. At the
elevated temp, the Pd complexes 2a-b are totally dissolved and the homogenous catalysis are
then undergoing. After the reaction, the temperature has been cooled down to room temp
(sometimes ice temp), the pale yellow Pd catalyst is quickly precipitated, easily recovered and
reused for the next run. We have been successful in developing the new type of recyclable
catalysts which precipitate by the thermomorphic mode at the end of reaction [2].

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

102



I +
CH2=CH

COOCH3

+ HNEt3I

thermomorphic mode; NEt3

X 130-160 oC

4a

2a or 2b;

X= H (3a), MeO (3b), Me (3c) X= H (5a), MeO (5b), Me (5c)

X
COOCH3

Eq (1)

As shown in Eq. (1), the Pd-catalyzed Heck reaction was selected to demonstrate the
feasibility of recycling use with Pd complex 2a as the catalyst under thermomorphic system
around 140 C for 5-9 h in each run. At the end of each cycle, the reaction mixtures were
cooled to room temp, centrifuged and recovered by decantation. The recovered Pd complex
2a was recycled to proceed to the next. The products were quantified with GC analysis by
comparison to internal standard (NMP). The results of Heck reaction here exhibited a 100%
selectivity favoring the trans product. As shown in Table 1, the Heck reaction of C6H5-I
(3a) with methyl acrylate (4a) have been successfully catalyzed by 2a with good recycling for
8 cycles. The reaction can be easily carried out with excellent selectivity and yield. Unlike
the thermomorphic reactions reported by Gladysz et al. [3,4], the complex 2a is a true metal
catalyst, not just the fluorinated phosphine compounds. To the best of my knowledge, this is
the first example of fluorous metal catalysis under the thermomorphic condition.

Table 1. Recycling results of Pd complex 2a as a catalyst in the Heck reaction under
thermomorphic system using iodobenzene as substrate
Cycle No. Time (h) Temp (oC) Yielda (%) TON TOF

1 5 140 100 1000 200
2 6 140 100 1000 167
3 7 140 100 1000 143
4 7 140 100 1000 143
5 7 140 100 1000 143
6 7 140 100 1000 143
7 7 140 100 1000 143
8 7 140 100 1000 143

Note: Reaction conditions: 140 oC; 6-7 h; DMF (3 mL); iodobenzene (2.5 mmol, 510 mg),
methyl acrylate (5 mmol, 355 mg), NEt3 (5 mmol, 510 mg), 0.1 mol % Pd complex 2a
(0.0025 mmol, 3.64 mg); After the reaction, the mixtures were centrifuged and the
precipitated catalyst 2a was recovered at room temp after each cycle. The recovered Pd
complex 2a was washed with 2 mL DMF (or CH2Cl2) before proceeding to the next cycle.

a. Based on GC yield (internal standard is NMP).

[1] V. K. Dioumaev, R. M. Bullock, Nature 2000, 424, 530-532.
[2] D.E. Bergbreiter, S.D. Sung, Advanced Synthesis and Catalysis 2006, 348 (12-13),

1352-1366.
[3] M. Wende, R. Meier, J. A. Gladysz, J. Am. Chem. Soc. 2001, 123, 11490-11491.
[4] M. Wende, J.A. Gladysz, J. Am. Chem. Soc. 2003, 125, 5861-5872.
[5] Y.Y. Huang, Y.M. He, H.F. Zhou, L. Wu, B.L. Li, Q.H. Fan, J. Org. Chem. 2006, 71,

2874-2877.
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Fluorous tagged molecules are easily separated from non-fluorous molecules by a 
fluorous liquid-liquid extraction (F-LLE) using fluorous solvents or a fluorous 
solid-phase extraction (F-SPE) using perfluorinated silica gel.[1]  From the viewpoint 
of high-throughput synthesis, various fluorous syntheses have been extensively 
investigated.  In connection to our recent studies on the synthesis of biologically 
attractive indole derivatives [2], we have focused our efforts on the diversity-oriented 
synthesis of indoles using a fluorous synthesis.  Occasionally difficulties have been 
encountered while optimizing our solid-phase synthesis of bisindolylmaleimide (PKC 
inhibitor) by a Pd catalyzed cross-coupling reaction due to the limited monitoring of 
the solid-phase reaction progress.[3]  Howerver, fluorous tagged molecules can be 
treated like typcial soluble organic compounds and conventional solution phase 
reactions are effective for optimizing the transformations. 
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Figure 1 
 

Certain bisindole alkaloids have unique structures, which possess a five- or 
six-membered central ring that is shared by the two indole units, and show diverse 
biological activities. Bisindolylmaleimide and bisindolylbenzoquinone (antitumor and 
insulin receptor activator) are recent, representative skeletons of these natural 
compounds (Figure 1).  Moreover, it has been reported that one of the non-natural 
bisindole derivatives with a bisindolylpyridine skeleton exhibits potent cytotoxity.  
Although many synthetic methods have been reported for each bisindole derivatives, 
a common synthetic method of bisindole alkaloids has yet to be reported.  Thus, we 
planned a general synthetic route for diverse bisindole derivatives with various 
central rings. 

In solid-phase synthesis, resins with various linkers (PS-Ts-Cl, PS-DES, etc.) act 
as functional protecting groups and the linkages to the polymer.  Similarly, the use of 
fluorous protecting groups (functional group protection and fluorous tag introduction) 
has been investigated (F-Boc, F-CbzCl, etc.).  However, sulfonamide type tags have 
yet to be explored in fluorous synthesis. 
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The tagging reagent, arylsulfonyl chloride 1 was easily synthesized by coupling 
perfluoroalkyl iodide with iodobenzene in the presence of Cu powder and subsequent 
chlorosulfonylation. 
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Scheme 1 
 

Protection and fluorous tag introduction of 3-iodoindole using 1, followed by Pd 
catalyzed borylation [4] gave fluorous key boronate 3 (Scheme 1).  The cross 
coupling between 3 and dihalo central ring proceeded smoothly.  Employing Tl2CO3 
as a base gave the best result for the cross coupling.  From the previous structure 
activity relationship study, the dissymmetric structure (mono- functionalization of 
indole N atom as an example) was suggested to strengthen the biological activities. 
Thus, our synthetic route should have excellent flexibility for attaching dissymmetric 
indole units.  Cross-coupling to introduce the second indole ring, followed by 
N-functionalization, and cleavage from the fluorous tag quantitatively gave the 
desired bisindolylquinone derivative (scheme 2).[5]  Introducing the tag in the 
functionalization step allows each step to be purified by F-SPE.  To the best of our 
knowledge, a precedent example of bisindolylbenzoquinone synthesis by Pd 
catalyzed cross coupling has not yet appeared. 
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Scheme 2 
 

By developing a concise synthetic route for bisindole compounds, we planned to 
construct natural and non-natural indole libraries (Figure 2).  The consecutive cross  
coupling reactions and functionalization were adopted as our common synthetic route.  
Bisindolylpyrazine and bisindolylpyridine skeletons have been known to show cytotoxic 
activity.  The coupling reaction with the fluorous tagged phenyl boronate instead of 3 
also proceeded in high yield. 
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Figure 2 
 

The light fluorous tagged molecules and heavy fluorous tagged molecules are easily 
separated.  Thus, we planned a fluorous synthesis via the double tagged molecules. 
The other type of fluorous tagged indolylboron was synthesized using novel fluorous 
BnBr tag.  The heavy fluorous indole product, which was doubly coupled with the two 
kinds of fluorous tagged indolylboron was easily purified from by F-SPE.  Selective 
mono deprotection and functionalization was found possible and the partial 
detagging-functionalizaiton of a double fluorous tagged molecule is an effective 
method to construct a library of diverse bisindole systems. 

In summary, the bisindolylbenzoquinone skeleton was easily assembled using 
fluorous tagged indolylboron and dihaloaromatics via a palladium catalyzed coupling 
reaction. This flexible synthetic route is considered to be suitable to construct a 
bisindole library.  In addition, the double fluorous tagging has potential for efficient 
diverse functionalization of the assembled molecules.  Further applications of the 
fluorous indole synthesis are currently underway. 
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The use of saccharide primers and cells for the production of biologically significant
oligosaccharides is a viable alternative to the conventional strategies such as enzymatic and
chemical synthetic methods.  When administered to cells, saccharide primers act as
substrates for cellular enzyme
catalyzed glycosylation to afford
oligosaccharides with structures
exactly the same as those produced
by the cells used. For example,
uptake of dodecyl β-lactoside by B16
cells resulted to sialylation of the
galactose residue to afford GM3-type
oligosaccharide.  GM3 is the main
ganglioside produced by B16 cells.
The design of amphiphilic saccharide
primers that will lead to efficient
cellular uptake and enzyme glycosylation of primer, and subsequent release of glycosylated
products require careful consideration of the hydrophilic glycan and the hydrophobic aglycon
structures.

The incorporation of fluorine to the saccharide primers was pursued in this
research based on the following considerations:  (1) The size of fluorine would not
dramatically create a steric hindrance to glycosylation by the enzyme. (2) Incorporation of
fluorine is expected to augment hydrophobicity enhancing assimilation of saccharide primers
into biological membranes.  (3) The fluorous approach would address the issue of purification
of products via convenient and simple extraction of the product with fluorous solvents. (4)
Fluorinated compounds exhibit exceptional thermal, chemical and biological stability due to
the strength of the carbon-fluorine bond.

A series of dodecyl galactosides with fluorine substituent at different positions of the
galactose unit (Gal 2F, Gal 4F and Gal 6F) and fluorous-tagged saccharide primers (LacF6,
LacF10, GalF6, GalF10, GluF6 and GluF10) were chemically synthesized and introduced in
mouse melanoma B16 cells to prime oligosaccharide synthesis.  This study aims not only to
evaluate the effect of the presence of fluorine atom in the saccharide residue on cell viability
and glycosylation, but also to demonstrate the utility of the fluorous tag of the aglycon (long
alkyl pony tail) for the purpose of separation.  

The synthesis of fluorous-tagged saccharide primers was accomplished by
glycosylation of two types of ponytails (perfluorohexylhexanol or perfluorodecylethanol) with
peracetylated lactoside, galactoside or glucoside derivatives in the presence of a Lewis acid.
Deacylation gave the desired LacF6, LacF10, GluF6, GluF10, GalF6 and GalF10 primers.
On the other hand, the chemical synthesis of fluorinated galactosides required multi-step
sequences as shown in scheme 1.  

Fifty µM of each of the saccharide primers were administered into mouse B16
melanoma cells in DMEM/F12 medium.  After incubation for 48 h, lipids from the culture
medium and the cell homogenates were collected by extraction using SepPak C18 column and
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by extraction with chloroform:methanol and then with chloroform:2-propanol:water,
respectively.  The lipid fractions were separated by HPTLC and the structure of glycosylated
products was determined by MALDI-TOF mass spectral analysis and treatment with
appropriate enzyme.

Incorporation of LacF6 and LacF10 were non-cytotoxic and resulted to sialylation of
the galactose residue to give a GM3-type oligosaccharide.  Although cytotoxic, GalF6 was
likewise elongated to give a sialylated galactoside suggesting that the cells could take in
GalF6, glycosylate and release the elongated products into
the culture medium before expiring. These results
confirmed that the fluorous-tagged primers could diffuse
through the cell membrane to the Golgi where the sialyl
transferases reside and function as acceptor substrate.
Hence, the numerous fluorine did not pose a steric barrier
to primer assimilation into cells and possibly provided
hydrophobic effect on the aglycon to enhance membrane
permeability and uptake of primers.  It is also noteworthy
that the C-F bond is very stable in the cellular environment
and remained intact even after cellular enzyme elongation
of the primer and release to the culture medium where the
glycosylated product is mostly found.

GalF10 and GluF10 that were not taken in by cells did not give any glycosylation
products.  Although sialyl transferases are amenable to acceptor modifications, the presence
of a terminal galactose residue to effect sialylation is essential. Thus, GluF6 although taken
in by the cells was also not elongated.
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Scheme 1.  Chemical synthesis of 2F Gal primer.  (i) HBr-AcOH, CH2Cl2 ; (ii) CuSO4 Zn dust, AcOH (71%, 2 steps); (iii) SelectfluorTM, MeCN, H2O 
(32%); (iv) CCl3CN, K2CO3, CH2Cl2; (v) C12H25OH, TBSOTf, CH2Cl2 (36%, 2 steps); (vi) MeONa, MeOH (89%).  Chemical synthesis of 4F and 6F 
Gal primers.  (a) C12H25OH, ClCH2CH2Cl, BF3Et2O (51%); (b) NaOMe, MeOH (100%); (c) PhCH(OMe)2, DMF, CSA; (d) BnBr, NaH, DMF (76%, 2 
steps); (e) TFA, Et3SiH, CH2Cl2 (87%); (f) Tf2O, CH2Cl2, pyridine; (g) TBAF, THF (35% 2 steps); (h) Pd/C, H2 then AcOH, pyridine (47%, 2 steps);  (i) 
NaOMe, MeOH (93%); (j) 80% AcOH (aq) (87%); (k) DAST, CH2Cl2 (30%); (l) Pd/C, H2 (16%)  .
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Table 1. Results of 48-h incubation of cells with  50 µΜ fluorous-tagged saccharide primers
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One of the applications for the use of the fluorous tag is the easy separation of the
glycosylated product from the rest of the components of the culture medium by simple
extraction with a fluorous solvent.  Among the fluorous solvents tested, nonafluorohexanol
(1H,1H,2H,2H-nonafluoro-1-hexanol) and pentafluoropentanol (4,4,5,5,5-pentafluoro-1-
pentanol) were found most suitable.  The glycosylated product could be separated from the
rest of the components of the culture medium by simple extraction as shown in the following
scheme.

The replacement of one hydroxyl unit by a fluorine atom in different positions of the
galactose residue elicited different cellular responses.
Modification at 2 position of the galactose residue did not
have adverse effects to the cell and resulted to sialylation
of 2F Gal.  However, modification of 4 and 6 positions
slightly, or greatly, affected cell viability.  Consequently,
saccharide elongation of 4F and 6F Gal primers could not
possibly take place.  The differences in cellular response
could be addressed considering not only the conformation
of primers but also cellular enzyme specificity.  The type
and position of substituent at the vicinity of the
glycosylation site (C3 position) and the positive effect on cell viability are prerequisites for
cellular enzyme glycosylation and substrate recognition by 2,3-sialyl transferase.  

Fluorinated saccharide primers are viable scaffolds for the synthesis of
oligosaccharides using cells. This research demonstrated that fluorine-containing saccharide
primers could actually be taken up by cells, the saccharide chain elongated by cellular
enzymes, and the elongated product released by the cells to the culture medium.   Uptake of
the primer by B16 cells resulted in the sialylation of the galactose residue to afford
oligosaccharides with the
same glycan structure as
gangliosides GM3 and
GM4 that could easily be
purified by fluorous
approach.  In the light of
increased demand for fluorinated saccharides due to their importance in biochemical studies,
the simple and convenient method of the regio- and stereoselective synthesis of the fluorine-
containing oligosaccharides described in this study is a viable alternative to the conventional
synthetic methods.
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room temperature. 
The behaviour of 19 
was further 
complicated by 
dynamic equilibrium  
between the product 
and the starting dimer. 
The conformational 
dynamics of 16 and 
19 was studied via 
variable temperature 
NMR spectroscopy. In 
case of 16 we were 
able to determine the 
Gibbs activation 
energy of rotation (Fig. 
4) by the CT method 
as ∆G‡ = 14.9 ± 0.1 
kcal mol-1 (52°C). 

Fig. 3 
 

 
 
 
Acknowledgement: The support of grant agencies 
(Grant Agency of the Academy of Sciences, 
A4072203; Ministry of Education, Youth and Sport of 
the Czech Republic, LC06070) is gratefully 
acknowledged. 
 

 
[1] Gassman, P.G.; Mickelson, J.W.; Sowa, J.R. Jr. J. Am. Chem. Soc. 1992, 114, 
6942. 
[2] Čermák, J.; Šťastná, L.; Sýkora, J.; Císařová, I.; Kvíčala, J. Organometallics 
2004, 23, 2850. 
[3] Čermák, J.; Auerová, K.; Nguyen, H.T.T.; Blechta, V.; Vojtíšek, P.; Kvíčala, J. 
Collect. Czech. Chem. Commun. 2001, 66, 382. 
[4] Červenková Šťastná, L.; Auerová, K.; Kvíčala, J.; Čermák, J. J. Organomet. 
Chem. 2007, 692, 1974. 
[5] Čermák, J.; Žádný, J.; Krupková, A.; Lopatová, K.; Vlachová, A.; Nguyen Thi, 
T.H.; Šauliová, J.; Sýkora, J.; Císařová, I. J. Organomet. Chem. 2007, 692, 1557. 
 
 

Rh

Cl
Cl

N

C4F9

Fig.4

The 2nd International Symposium on Fluorous Technologies (ISoFT'07)

115


























































































	AL1: AL1
	AL2: AL2
	PL1: PL1
	PL2: PL2
	PL3: PL3
	PL4: PL4
	PL5: PL5
	IL1: IL1
	IL2: IL2
	IL3: IL3
	IL4: IL4
	IL5: IL5
	IL6: IL6
	IL7: IL7
	IL8: IL8
	IL9: IL9
	IL10: IL10
	IL11: IL11
	IL12: IL12
	O1: O1
	O2: O2
	O3: O3
	O4: O4
	O5: O5
	O6: O6
	O7: O7
	P1: P1
	P2: P2
	P3: P3
	P4: P4
	P5: P5
	P6: P6
	P7: P7
	P8: P8
	P9: P9
	P10: P10
	P11: P11
	P12: P12
	P13: P13
	P14: P14
	P15: P15
	P16: P16
	P17: P17
	P18: P18
	P19: P19
	P20: P20
	P21: P21
	P22: P22
	P23: P23
	P24: P24
	P25: P25
	P26: P26
	P27: P27
	P28: P28
	P29: P29


